597 research outputs found

    On the Pierce-Birkhoff Conjecture

    Full text link
    This paper represents a step in our program towards the proof of the Pierce--Birkhoff conjecture. In the nineteen eighties J. Madden proved that the Pierce-Birkhoff conjecture for a ring Aisequivalenttoastatementaboutanarbitrarypairofpointsis equivalent to a statement about an arbitrary pair of points \alpha,\beta\in\sper\ Aandtheirseparatingideal and their separating ideal ;werefertothisstatementastheLocalPierceBirkhoffconjectureat; we refer to this statement as the Local Pierce-Birkhoff conjecture at \alpha,\beta.Inthispaper,foreachpair. In this paper, for each pair (\alpha,\beta)with with ht()=\dim A,wedefineanaturalnumber,calledcomplexityof, we define a natural number, called complexity of (\alpha,\beta).Complexity0correspondstothecasewhenoneofthepoints. Complexity 0 corresponds to the case when one of the points \alpha,\betaismonomial;thiscasewasalreadysettledinalldimensionsinaprecedingpaper.Hereweintroduceanewconjecture,calledtheStrongConnectednessconjecture,andprovethatthestrongconnectednessconjectureindimensionn1impliestheconnectednessconjectureindimensionninthecasewhen is monomial; this case was already settled in all dimensions in a preceding paper. Here we introduce a new conjecture, called the Strong Connectedness conjecture, and prove that the strong connectedness conjecture in dimension n-1 implies the connectedness conjecture in dimension n in the case when ht()islessthann1.WeprovetheStrongConnectednessconjectureindimension2,whichgivestheConnectednessandthePierceBirkhoffconjecturesinanydimensioninthecasewhen is less than n-1. We prove the Strong Connectedness conjecture in dimension 2, which gives the Connectedness and the Pierce--Birkhoff conjectures in any dimension in the case when ht()lessthan2.Finally,weprovetheConnectedness(andhencealsothePierceBirkhoff)conjectureinthecasewhendimensionofAisequalto less than 2. Finally, we prove the Connectedness (and hence also the Pierce--Birkhoff) conjecture in the case when dimension of A is equal to ht()=3,thepair, the pair (\alpha,\beta)isofcomplexity1and is of complexity 1 and A$ is excellent with residue field the field of real numbers

    On points at infinity of real spectra of polynomial rings

    Get PDF
    Let R be a real closed field and A=R[x_1,...,x_n]. Let sper A denote the real spectrum of A. There are two kinds of points in sper A : finite points (those for which all of |x_1|,...,|x_n| are bounded above by some constant in R) and points at infinity. In this paper we study the structure of the set of points at infinity of sper A and their associated valuations. Let T be a subset of {1,...,n}. For j in {1,...,n}, let y_j=x_j if j is not in T and y_j=1/x_j if j is in T. Let B_T=R[y_1,...,y_n]. We express sper A as a disjoint union of sets of the form U_T and construct a homeomorphism of each of the sets U_T with a subspace of the space of finite points of sper B_T. For each point d at infinity in U_T, we describe the associated valuation v_{d*} of its image d* in sper B_T in terms of the valuation v_d associated to d. Among other things we show that the valuation v_{d*} is composed with v_d (in other words, the valuation ring R_d is a localization of R_{d*} at a suitable prime ideal)

    The Nash problem of arcs and its solution

    Get PDF
    7 pagesHistorical overview of Nash Problem of arcs in the EMS NewsletterThe goal of this paper is to give a historical overview of the Nash Problem of arcs in arbitrary dimension, as well as its a rmative solution in dimension two by J. Fernandez de Bobadilla and M. Pe Pereira and a negative solution in higher dimensions by T. de Fernex, S. Ishii and J. Koll ar. This problem was stated by J. Nash around 1963 and has been an important subject of research in singularity theory

    Approximate roots of a valuation and the Pierce-Birkhoff Conjecture

    Get PDF
    This paper is a step in our program for proving the Piece-Birkhoff Conjecture for regular rings of any dimension (this would contain, in particular, the classical Pierce-Birkhoff conjecture which deals with polynomial rings over a real closed field). We first recall the Connectedness and the Definable Connectedness conjectures, both of which imply the Pierce - Birkhoff conjecture. Then we introduce the notion of a system of approximate roots of a valuation v on a ring A (that is, a collection Q of elements of A such that every v-ideal is generated by products of elements of Q). We use approximate roots to give explicit formulae for sets in the real spectrum of A which we strongly believe to satisfy the conclusion of the Definable Connectedness conjecture. We prove this claim in the special case of dimension 2. This proves the Pierce-Birkhoff conjecture for arbitrary regular 2-dimensional rings

    The analogue of Izumi's Theorem for Abhyankar valuations

    Get PDF
    16 pagesA well known theorem of Shuzo Izumi, strengthened by David Rees, asserts that all the divisorial valuations centered in an analytically irreducible local noetherian ring are linearly comparable to each other. In the present paper we generalize this theorem to the case of Abhyankar valuations with archimedian value semigroup. Indeed, we prove that in a certain sense linear equivalence of topologies characterizes Abhyankar valuations with archimedian semigroups, centered in analytically irreducible local noetherian rings. Then we show that some of the classical results on equivalence of topologies in noetherian rings can be strengthened to include linear equivalence of topologies. We also prove a new comparison result between the Krull topology and the topology defined by the symbolic powers of an arbitrary ideal

    Key polynomials for simple extensions of valued fields

    Full text link
    Let ι:KLK(x)\iota:K\hookrightarrow L\cong K(x) be a simple transcendental extension of valued fields, where KK is equipped with a valuation ν\nu of rank 1. That is, we assume given a rank 1 valuation ν\nu of KK and its extension ν\nu' to LL. Let (Rν,Mν,kν)(R_\nu,M_\nu,k_\nu) denote the valuation ring of ν\nu. The purpose of this paper is to present a refined version of MacLane's theory of key polynomials, similar to those considered by M. Vaqui\'e, and reminiscent of related objects studied by Abhyankar and Moh (approximate roots) and T.C. Kuo. Namely, we associate to ι\iota a countable well ordered set Q={Qi}iΛK[x]; \mathbf{Q}=\{Q_i\}_{i\in\Lambda}\subset K[x]; the QiQ_i are called {\bf key polynomials}. Key polynomials QiQ_i which have no immediate predecessor are called {\bf limit key polynomials}. Let βi=ν(Qi)\beta_i=\nu'(Q_i). We give an explicit description of the limit key polynomials (which may be viewed as a generalization of the Artin--Schreier polynomials). We also give an upper bound on the order type of the set of key polynomials. Namely, we show that if char kν=0\operatorname{char}\ k_\nu=0 then the set of key polynomials has order type at most ω\omega, while in the case char kν=p>0\operatorname{char}\ k_\nu=p>0 this order type is bounded above by ω×ω\omega\times\omega, where ω\omega stands for the first infinite ordinal.Comment: arXiv admin note: substantial text overlap with arXiv:math/060519
    corecore