193 research outputs found

    Advanced quasistatic approximation

    Full text link
    The quasistatic approximation (QSA) is an efficient method of simulating laser- and beam-driven plasma wakefield acceleration, but it becomes imprecise if some plasma particles make long longitudinal excursions in a strongly nonlinear wave, or if waves with non-zero group velocity are present in the plasma, or the plasma density gradients are sharp, or the beam shape changes rapidly. We present an extension to QSA that is free from its limitations and retains its main advantages of speed and reduced dimensionality. The new approach takes into account the exchange of information between adjacent plasma layers. We introduce the physical model, describe its numerical implementation, and compare the simulation results with available analytical solutions and other codes

    AWAKE, the advanced proton driven plasma wakefield acceleration experiment at CERN

    Get PDF
    The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wakefield generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D experiment at CERN and the world׳s first proton driven plasma wakefield acceleration experiment. The AWAKE experiment will be installed in the former CNGS facility and uses the 400 GeV/c proton beam bunches from the SPS. The first experiments will focus on the self-modulation instability of the long (rms ~12 cm) proton bunch in the plasma. These experiments are planned for the end of 2016. Later, in 2017/2018, low energy (~15 MeV) electrons will be externally injected into the sample wakefields and be accelerated beyond 1 GeV. The main goals of the experiment will be summarized. A summary of the AWAKE design and construction status will be presented

    Path to AWAKE : evolution of the concept

    Get PDF
    This paper describes the conceptual steps in reaching the design of the AWAKE experiment currently under construction at CERN. We start with an introduction to plasma wakefield acceleration and the motivation for using proton drivers. We then describe the self-modulation instability - a key to an early realization of the concept. This is then followed by the historical development of the experimental design, where the critical issues that arose and their solutions are described. We conclude with the design of the experiment as it is being realized at CERN and some words on the future outlook. A summary of the AWAKE design and construction status as presented in this conference is given in Gschwendtner et al. [1]

    Experimental Observation of Plasma Wakefield Growth Driven by the Seeded Self-Modulation of a Proton Bunch

    Get PDF
    We measure the effects of transverse wakefields driven by a relativistic proton bunch in plasma with densities of 2.1 x 10(14) and 7.7 x 10(14) electrons/cm(3). We show that these wakefields periodically defocus the proton bunch itself, consistently with the development of the seeded self-modulation process. We show that the defocusing increases both along the bunch and along the plasma by using time resolved and time-integrated measurements of the proton bunch transverse distribution. We evaluate the transverse wakefield amplitudes and show that they exceed their seed value (< 15 MV/m) and reach over 300 MV/m. All these results confirm the development of the seeded self-modulation process, a necessary condition for external injection of low energy and acceleration of electrons to multi-GeV energy levels

    Experimental study of extended timescale dynamics of a plasma wakefield driven by a self-modulated proton bunch

    Get PDF
    Plasma wakefield dynamics over timescales up to 800 ps, approximately 100 plasma periods, are studied experimentally at the Advanced Wakefield Experiment (AWAKE). The development of the longitudinal wakefield amplitude driven by a self-modulated proton bunch is measured using the external injection of witness electrons that sample the fields. In simulation, resonant excitation of the wakefield causes plasma electron trajectory crossing, resulting in the development of a potential outside the plasma boundary as electrons are transversely ejected. Trends consistent with the presence of this potential are experimentally measured and their dependence on wakefield amplitude are studied via seed laser timing scans and electron injection delay scan

    Experimental Observation of Proton Bunch Modulation in a Plasma at Varying Plasma Densities

    Get PDF
    We give direct experimental evidence for the observation of the full transverse self-modulation of a long, relativistic proton bunch propagating through a dense plasma. The bunch exits the plasma with a periodic density modulation resulting from radial wakefield effects. We show that the modulation is seeded by a relativistic ionization front created using an intense laser pulse copropagating with the proton bunch. The modulation extends over the length of the proton bunch following the seed point. By varying the plasma density over one order of magnitude, we show that the modulation frequency scales with the expected dependence on the plasma density, i.e., it is equal to the plasma frequency, as expected from theory
    corecore