126 research outputs found

    Co-activation of hedgehog and AKT pathways promote tumorigenesis in zebrafish

    Get PDF
    The zebrafish has become an important model for cancer research. Several cancer models have been established by transgenic expression of human or mouse oncogenes in zebrafish. Since it is amenable to efficient transgenesis, zebrafish have immense potential to be used for studying interaction of oncogenes and pathways at the organismal level. Using the Gal4VP16-UAS binary transgenic expression approach, we established stable transgenic lines expressing an EGFP fusion protein of an activated zebrafish Smoothened (Smoa1-EGFP). Expression of the zebrafish Smoa1-EGFP itself did not lead to tumor formation either in founder fish or subsequent generations, however, co-expressing a constitutively active human AKT1 resulted in several tumor types, including spindle cell sarcoma, rhabdomyoma, ocular melanoma, astrocytoma, and myoxma. All tumor types showed GFP expression and increased Patched 1 levels, suggesting involvement of zebrafish Smoa1 in tumorigenesis. Immunofluorescence studies showed that tumors also expressed elevated levels of phosphorylated AKT, indicating activation of the PI3K-AKT pathway. These results suggest that co-activation of the hedgehog and AKT pathways promote tumorigenesis, and that the binary transgenic approach is a useful tool for studying interaction of oncogenes and oncogenic pathways in zebrafish

    Spectral analysis of Gene co-expression network of Zebrafish

    Full text link
    We analyze the gene expression data of Zebrafish under the combined framework of complex networks and random matrix theory. The nearest neighbor spacing distribution of the corresponding matrix spectra follows random matrix predictions of Gaussian orthogonal statistics. Based on the eigenvector analysis we can divide the spectra into two parts, first part for which the eigenvector localization properties match with the random matrix theory predictions, and the second part for which they show deviation from the theory and hence are useful to understand the system dependent properties. Spectra with the localized eigenvectors can be characterized into three groups based on the eigenvalues. We explore the position of localized nodes from these different categories. Using an overlap measure, we find that the top contributing nodes in the different groups carry distinguished structural features. Furthermore, the top contributing nodes of the different localized eigenvectors corresponding to the lower eigenvalue regime form different densely connected structure well separated from each other. Preliminary biological interpretation of the genes, associated with the top contributing nodes in the localized eigenvectors, suggests that the genes corresponding to same vector share common features.Comment: 6 pages, four figures (accepted in EPL

    Beroepsmatige blootstelling aan ozon in een drinkwaterproductiebedrijf

    Get PDF
    Gemeten blootstellingsniveaus aan ozon laten dusdanig lage waarden zien, dat onder normale omstandigheden een kans op normoverschrijding niet aanwezig i

    Roles of brca2 (fancd1) in Oocyte Nuclear Architecture, Gametogenesis, Gonad Tumors, and Genome Stability in Zebrafish

    Full text link
    Mild mutations in BRCA2 (FANCD1) cause Fanconi anemia (FA) when homozygous, while severe mutations cause common cancers including breast, ovarian, and prostate cancers when heterozygous. Here we report a zebrafish brca2 insertional mutant that shares phenotypes with human patients and identifies a novel brca2 function in oogenesis. Experiments showed that mutant embryos and mutant cells in culture experienced genome instability, as do cells in FA patients. In wild-type zebrafish, meiotic cells expressed brca2; and, unexpectedly, transcripts in oocytes localized asymmetrically to the animal pole. In juvenile brca2 mutants, oocytes failed to progress through meiosis, leading to female-to-male sex reversal. Adult mutants became sterile males due to the meiotic arrest of spermatocytes, which then died by apoptosis, followed by neoplastic proliferation of gonad somatic cells that was similar to neoplasia observed in ageing dead end (dnd)-knockdown males, which lack germ cells. The construction of animals doubly mutant for brca2 and the apoptotic gene tp53 (p53) rescued brca2-dependent sex reversal. Double mutants developed oocytes and became sterile females that produced only aberrant embryos and showed elevated risk for invasive ovarian tumors. Oocytes in double-mutant females showed normal localization of brca2 and pou5f1 transcripts to the animal pole and vasa transcripts to the vegetal pole, but had a polarized rather than symmetrical nucleus with the distribution of nucleoli and chromosomes to opposite nuclear poles; this result revealed a novel role for Brca2 in establishing or maintaining oocyte nuclear architecture. Mutating tp53 did not rescue the infertility phenotype in brca2 mutant males, suggesting that brca2 plays an essential role in zebrafish spermatogenesis. Overall, this work verified zebrafish as a model for the role of Brca2 in human disease and uncovered a novel function of Brca2 in vertebrate oocyte nuclear architecture

    Novel Multi-Linear Quantitative Brain Volume Formula For Manual Radiological Evaluation Of Brain Atrophy

    Get PDF
    This research article published by Research Square, 2020The brain is a dynamic organ that develops and involutes in volume. The process of volume loss known as brain atrophy commonly occurs in elderly. However, some conditions have been implicated to provoke this paradoxical process in childhood and making it important to have methods and techniques of quantifying brain volume. Automated quantitative methods are very important in brain atrophy assessment but these tools have limited availability in developing countries. The simplified linear radiological methods are poorly reproducible and hence there is a need to develop an alternative formula that is reproducible and applicable at all healthcare levels
    corecore