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Abstract

The zebrafish has become an important model for cancer research. Several cancer models have
been established by transgenic expression of human or mouse oncogenes in zebrafish. Since it is
amenable to efficient transgenesis, zebrafish have immense potential to be used for studying
interaction of oncogenes and pathways at the organismal level. Using the Gal4VP|6-UAS binary
transgenic expression approach, we established stable transgenic lines expressing an EGFP fusion
protein of an activated zebrafish Smoothened (Smoal-EGFP). Expression of the zebrafish Smoal-
EGFP itself did not lead to tumor formation either in founder fish or subsequent generations,
however, co-expressing a constitutively active human AKTI resulted in several tumor types,
including spindle cell sarcoma, rhabdomyoma, ocular melanoma, astrocytoma, and myoxma. All
tumor types showed GFP expression and increased Patched | levels, suggesting involvement of
zebrafish Smoal in tumorigenesis. Inmunofluorescence studies showed that tumors also expressed
elevated levels of phosphorylated AKT, indicating activation of the PI3K-AKT pathway. These
results suggest that co-activation of the hedgehog and AKT pathways promote tumorigenesis, and
that the binary transgenic approach is a useful tool for studying interaction of oncogenes and
oncogenic pathways in zebrafish.

Findings

The Hedgehog (Hh) pathway is involved in cell fate deter-
mination and embryonic patterning during early verte-
brate development, and is also implicated in
tumorigenesis [1]. Activation of the Hh pathway underlies
the majority of sporadic human basal cell carcinoma
(BCCQ) [2]. Expression of sonic Hedgehog, constitutively
active Smoothened, and transcription factors Glil and
Gli2 in keratinocytes results in BCC in transgenic frog,

mice, and human skin [3-6]. Since zebrafish have
emerged as a promising vertebrate system to model
human cancers [7-9], we decided to determine whether
activation of the Hh pathway in transgenic zebrafish
could render them prone to developing BCC. We gener-
ated the zebrafish version of activated Smoothened using
site-specific mutagenesis of wild type smoothened cDNA
[SmoW514L, referred as Smoal hereafter, see Additional file
1]. To facilitate observation of the tumorigenesis proc-
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esses, we tagged the zebrafish Smoal with C-terminal
EGFP. We expressed it under the control of a CMV pro-
moter, and observed GFP expression by 5 hours post fer-
tilization (hpf). To assess the effect of Smoal-EGFP
expression on the Hh signalling pathway, we analyzed the
expression of patched 1 (ptc1) [10], a marker for Hh activ-
ity, by in situ hybridization. We detected ectopic expres-
sion of ptc1 (n = 30) in the Tg(CMV:smoal-EGFP) injected,
but not in non-injected control embryos (Fig. 1A, 1B
respectively), indicating Smoal-EGFP could still activate
the Hh pathway.

We further generated a binary transgenic construct based
on the Gal4VP16-UAS system [11] [see Additional file 2|.
The zebrafish cytokeratin 4 (krt4) promoter was used to
drive expression of Gal4VP16 as it has been shown to
direct EGFP expression exclusively in epithelial cells [12].
Injection of the Tg(krt4:Gal4VP16;14 x UAS:smoal-EGFP)
construct into 1-cell stage embryos led to observable lev-
els of EGFP expression starting at about 5 hpf. We ana-
lyzed more than 100 founder fish over a period of one and
a half years, but did not find any tumor. Adult founder
fish were crossed to wild-type fish, and two male founder
fish were found to carry the transgene in their germline.
These lines were designated as line A and line B. Both lines
did not show observable EGFP expression, but in situ
hybridization using a GFP antisense probe detected low
levels of GFP expression in skin epithelial cells [see Addi-
tional file 3]. Both lines were also crossed with a Tg(14 x
UAS:tdTomato) reporter line that we generated in the rose
background (unpublished results) to verify their expres-
sion patterns [13]. Line A showed epithelial restricted
expression [see Additional file 3], while line B showed
patchy epithelial expression and ectopic expression in
neuronal cells of the brain, spinal cord, and trunk muscles

Figure |

Expression of zebrafish Smoal activated the Hh
pathway. A, whole-mount in situ hybridization of a control
12 hpf embryo showing ptcl expression in adaxial structures.
B, a 12 hpf transgenic embryo expressing CMV-smoa |-EGFP
showed ectopic expression of ptc/ (Arrows). Scale bars, 100

um.
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(Data not shown). Fish positive for tdTomato expression
in both lines were raised to adulthood and no tumor were
found even when the fish reached one and a half years
old. To further characterize the expression pattern for line
A, an adult fish at two months old was sacrificed and par-
affin sections were used for immunofluorescence against
GFP. Expression was found predominantly in the skin epi-
thelia [see Additional file 3], which was expected since the
promoter driving the transgenic expression was a skin-
specific krt4 promoter. Expression of GFP was also found
in the retina ganglion cell layer [see Additional file 3]. We
did not find prominent expression of GFP in other tissues
or organs.

Since the Tg(krt4:Gal4V16;14 x UAS-smoal:EGFP) fish did
not develop tumors at one and a half years of age, we
decided to test whether other oncogenes could collaborate
to promote tumorigenesis. We chose to use transgenic line
A as it showed rather specific expression in epithelia in
comparison to line B. A recent report has shown that PI3K
and AKT are essential for SHH signalling [14]. As a first
test of our co-expression strategy, we expressed the wild-
type and the constitutively active human AKT1 by inject-
ing Tg(UAS:hAKT1) or Tg(UAS:myrhAKT1) plasmid DNA
into progeny of F1 siblings of the Tg(krt4:Gal4V16;14 x
UAS-smoal-EGFP) line A fish. Both the smoal and AKT1
genes were under control of the 14 x UAS promoter, so
their expression was driven by the same krt4 promoter
through Gal4VP16. While no tumor was found in the
resultant F2 fish injected with Tg(UAS:hAKT1), various
tumor types in the trunk, the eye, and the head region
were observed in the F2 fish injected with
Tg(UAS:myrhAKT1). The tumor types identified include a
case of spindle cell sarcoma, rhabdomyoma, ocular
melanoma, myoxma, and several cases of astrocytoma
and glioblastoma (Fig. 2 and Table 1). These tumor types
were diagnosed according to histological criteria used in
mammals [15]. GFP expression was found exclusively in
the tumors, due to either the additive effect of a large
number of weakly EGFP-positive cells or the loss of mech-
anisms that suppress Smoal-EGFP levels, or both. In any
case, the detection of EGFP expression in tumors indi-
cated the involvement of the zebrafish Smoal in tumori-
genesis (Fig. 2B, 2E). Overall, nearly 10% of injected fish
developed tumors before reaching 3 months of age. Sur-
prisingly, the rest of the fish were tumor-free at 18 months
of age, at which we stopped the experiment. We also iden-
tified fish that carried both zebrafish smoal and the onco-
genic human AKT1 in their germline. We crossed two of
these fish to each other, and found 3 out of 15 of the off-
spring developed tumors at around 2 months of age,
including one case of astrocytoma in the lower-trunk
region (Fig. 2H), the other two cases were not diagnosed.
In contrast, expression of either wild-type or constitutively
active human AKT1 alone, driven by the same krt4 pro-
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Figure 2

Zebrafish tumors induced by co-expression of
zebrafish Smoal and constitutively active human
AKTI. A, B and C, a |2-week-old fish with rhabdomyoma
(A), showing GFP expression exclusively in the tumor (B); D,
E and F, a 6-week-old fish with glioblastoma; G, H and |, a 8-
week-old double transgenic fish with astrocytoma in the
lower trunk region. Scale bars, 50 um.

moter, did not induce tumors. In fact, even when we
expressed the constitutively active human AKT1 driven by
a strong ubiquitous -actin promoter, no tumor was
found in more than 50 fish over an 18 months period.
Thus, the tumors likely resulted from collaboration
between the constitutively active hAKT1 and Smoal.

Activation of the PI3K-AKT pathway leads to phosphor-
ylation of AKT1 [14]. To determine whether phospho-

http://www.molecular-cancer.com/content/8/1/40

AKT1 levels were increased in the tumors, we performed
immunofluorescence studies on a 3-week-old fish with a
trunk tumor showing strong GFP expression and on a 12-
week-old fish with an ocular tumor showing weak GFP
expression. Immunofluorescence analysis indicated that
both tumors had significantly higher levels of phosphor-
ylated AKT (Fig. 3B, 3D) when compared to age-matched,
tumor-free transgenic fish (Fig. 3A, 3C). To demonstrate
that both the SHH and AKT pathways were activated in a
same tumor, paraffin sections of the astrocytoma as
shown in Fig. 2G was used for immunofluorescence study
against Patched 1 and phosphorylated AKT. As shown in
Fig. 3F and 3G, the tumor had elevated levels of both
Patched 1 and phosphorylated AKT, indicating that both
pathways were activated in this tumor. These results sug-
gest that the tumors resulted from collaborative expres-
sion of both the zebrafish Smoal and the constitutively
active human AKT1.

Here we demonstrated that several tumor types in
zebrafish can be induced by transgenic expression of
oncogenes, most likely due to co-expression of an onco-
genic zebrafish Smoal and the constitutively active
human AKT1. It was surprising that we did not find any
skin tumor, as activation of either the Hh or AKT pathway
[16,17] leads to skin hyperplasia and skin tumors in
mouse. We also generated a transgenic line using the Tet-
Off system that expressed the Smoal-EGFP driven by a 5
kb zebrafish cytokeratin 5 (krt5) gene promoter. This trans-
genic line expressed higher levels of zebrafish Smoal, but
we did not find any skin tumor in fish that reached two
years of age (Data not shown). It is possible that either: 1)
the level of Smoal expression was below the threshold for
tumorigenesis; 2) the Smoal-EGFP fusion protein was not
potent enough; 3) the krt4 and krt5 promoters were not

Table I: Tumors induced by co-expression of zebrafish smoal and constitutively active human AKT I

Tumor location (cases) Fish age (weeks) GFP expression Elevated phospho-AKT | Diagnoses
Trunk (4) 3 Yes ND Rhabdomyoma
4 Yes Yes ND
6 Yes ND ND
12 Yes ND Rhabdomyoma
Eye (3) 4 Yes ND Ocular Melanoma
12 Yes Yes Astrocytoma
12 Yes ND Astrocytoma
Head (4) 6 Yes ND Glioblastoma
6 Yes ND Glioblastoma
8 Yes ND ND
12 Yes ND Astrocytoma
Others (2) 4 Yes ND Myxoma
8 Yes ND Spindle cell sarcoma

*The tumors were found from 4 batches of injection involving 147 injected F2 fish that had survived beyond 2-week-old. Fish were observed for
one and a half years, no other tumors were found in fish more than 3 months of age. ND: Not determined.
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Figure 3
Elevated phospho-AKT | and Patched | levels in zebrafish tumors. A, B, a 3-week-old transgenic fish with trunk
tumor (B) and its age-matched tumor-free fish (A). C, D, a 12-week-old fish with an eye tumor (D) and its age-matched tumor
free fish (C). Immunofluorescence was done on cryosections for the above fish. E-H, an astrocytoma from a double transgenic
fish showed elevated levels of both Patched | (F) and phosphorylated AKT (H). Immunofluoresence was done on paraffin sec-
tions for this tumor. Negative controls for Patched | (E) and phosphorylated AKT (G) were treated the same way except no
primary antibodies were added. N, Notochord; AKT-P, phosphorylated AKT. Scale bars, 100 um for A-D, 50 um for E-H.

active in keratinocyte progenitors; or 4) the combinations
thereof. Alternatively, zebrafish skin may be quite refrac-
tory to developing basal cell carcinoma in comparison to
frog and mammals, due to differences either in structure
or in tumorigenic mechanisms. As for the other tumor
types, especially the neuronal tumors, aberrant activation
of the Hh pathway has been implicated in medulloblast-
oma and glioma [18]. Studies on AKT pathway implicate
it not only in skin tumors, but also in glioblastoma [19].
Furthermore, the Akt signalling pathway contributes to
SHH-induced medulloblastoma formation [20]. There-
fore, it is conceivable that tumor types of neuronal origin
may be induced in fish. But how exactly these tumors were
induced in our transgenic fish is unknown. Immunofluo-
rescence study showed that transgenic fish expressed the
fusion protein not only in skin epithelia, but also in ret-
ina, which was not found in a previous study using the
same promoter. An enhancer-trapping event might have
occurred that led to ectopic expression of low levels of
zebrafish Smoal in neuronal progenitor cells, which
made the cells prone to developing tumors. Expression of
a second oncogene, the constitutively active human AKT1,
in the same cell types eventually led to tumorigenesis. It is
also possible that integration of the transgenic construct
into the zebrafish genome somehow activated an endog-
enous oncogene or inactivated a certain tumor suppressor
gene, therefore contributed to tumor formation. We tried

to determine the insertion copy numbers and the inser-
tion sites in Line A fish through linker-mediated PCR and
inverse PCR. We only detected one insertion, which was
integrated at an intergenic region on zebrafish chromo-
some 11 (Data not shown). We do not know the effects of
this integration on tumorigenesis in this particular trans-
genic line.

Cancers result from progressive accumulation of muta-
tions in multiple cancer genes [21,22]. How different can-
cer genes interact with each other leading to different
types of cancer is still a challenging subject. So far, onco-
genic interactions have largely been studied in cultured
cells or in mouse models. As a complement to these stud-
ies, the zebrafish provides a powerful model system to
study interactions between different cancer genes and
pathways at the organismal level because it is amenable to
highly-efficient and cost-effective transgenic strategies
[23,24]. Binary transgenic technology, such as the
Gal4VP16-UAS system, the Tet-On and Tet-Off system
[25], and the mifepristone inducible LexPR system [26]
work efficiently in zebrafish, making it possible to express
multiple oncogenes in the same tissue or cell type under
the control of the same non-endogenous transcription
factor. A limitation for using these binary transgenic
approaches, as we have learned from our experience, is
that stable lines carrying oncogenes may have diminished
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survivability. Therefore, their potential to be used for col-
laborative studies with other oncogenes may be some-
what compromised. Another challenge will be to untangle
the role of individual oncogenes in the tumor formation
and progression processes.

In conclusion, we provide in vivo evidence that co-expres-
sion of the zebrafish Smoal and the constitutively active
human AKT1 lead to tumorigenesis in zebrafish, estab-
lishing that the binary transgenic approach is a useful tool
for studying collaboration between oncogenes and onco-
genic pathways in the zebrafish model.

Materials and methods

Zebrafish and maintenance

Zebrafish (Danio rerio) were maintained in Aquatic Habi-
tats systems (Apopka, FL) on a 14 to 10 light dark cycle
using a protocol approved by OHSU IACUC. The leopard
long fin (TL), and the rose mutant fish which has a muta-
tion in the endothelial receptor bl gene causing light pig-
mentation were used. Embryos were reared in 0.3x
Danieau's solution at 28.5°C

DNA constructs and microinjection

The transgenic DNA constructs are based on either the
miniTol2 vector (denoted T2) or the I-Sce I meganuclease
vector (denoted 1) |[see additional file 1]. The
Tg(krt4:Gal4VP16;14 x UAS:smoal-EGFP) transgenic con-
struct contains a 2.2 kb zebrafish krt4 promoter, the
Gal4VP16-UAS sequence from pEF-GVP-UG, and coding
sequence for an activated zebrafish smo fused to EGFP at
the C-terminus. The IU-mCherry plasmid, which contains
14 x UAS and E1b sequence from pUG and mCherry cod-
ing sequence, is the basic vector from which other UAS-
driven vectors are derived, including pIU-hAKT1 and pIU-
myrhAKT1 (myristylated human AKT1 lacking the Pleck-
strin Homology Domain sequence, referred to as constitu-
tively active human AKT1). To deliver transgenes for
transient expression or to establish stable lines using Tol2-
based plasmids, about 1 nl sterile isotonic saline solution
containing transgene DNA (30 ng/ul) and transposase
RNA (30 ng/ul) was injected into fertilized eggs of the
leopard strain. For the meganuclease-based constructs, the
vector was mixed with I-Scel meganuclease and 30 pg of
plasmid in 1 nl of the mixture was injected. Transgenic
lines were identified by PCR using a zebrafish smoothened
forward primer (5'-GGAAAGGAACAAACTITGGATG-3')
and an EGFP reverse primer (5'-CTGAACITGTGGCCGTT-
TACGTC-3").

Histological study of zebrafish tumors

Zebrafish with tumors were fixed in 4% paraformalde-
hyde at 4°C for 24-48 hours, washed with PBST and
decalcified in 0.5 M EDTA for up to 7 days depending on

http://www.molecular-cancer.com/content/8/1/40

size. Tissues were dehydrated in a series of graded ethanol
solutions and xylene, then embedded in paraffin. Orien-
tation of the fish depended on location of the lesions. For
fish with no gross lesions, individuals were cut in half sag-
ittally just to the left of midline and both halves of the fish
were placed into the cassette for sectioning. For small fish,
serial sections were prepared. Sections were 4-6 um thick
and were stained with hematoxylin and eosin. Since
standardized diagnostic criteria for fish tumors is not yet
available, diagnostic criteria for other species, such as
human and mouse were used to identify zebrafish tumors.

Immunofluorescence study of zebrafish tumors

For cryosections, zebrafish with tumors were fixed in 4%
paraformaldehyde at 4°C for 24 hours, washed with
PBST. Tumor tissues were first immersed in 15% glucose
for 1 hour, followed by immersion in 30% sucrose over-
night. They were then embedded in O.C.T compound and
sectioned at 12 um thickness. For paraffin sections, fish
were treated as mentioned in histological study of
zebrafish tumors. A rabbit anti-GFP polyclonal antibody
(Invitrogen, 1:500), a rabbit anti-phospho-AKT (Thr308)
antibody (C31E5, Cell Signalling Technology, 1:200),
and a goat anti-Patched 1 (zebrafish) antibody (Everest
Biotech, 1:200) were used for immunofluorescence stud-
ies of the tumors. Images were acquired with an inverted
Zeiss microscope equipped with a CCD camera and Axio-
Vision software. All images are processed in Photoshop.

Abbreviations

PI3K: Phosphoinositide 3-kinases; AKT1: v-akt murine
thymoma viral oncogene homolog 1; UAS: upstream acti-
vation sequence; CMV: Cytomegalovirus.
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Additional material

Additional file 1

Amino acid sequence alignment of mouse and zebrafish Smoothened.
The alignment indicated that the W514 of zebrafish Smoothened is the
W539 equivalent of mouse Smoothened. It was mutated to L in the active
forms (highlighted in red). Accession numbers for zebrafish and mouse
Smoothened are [NP_571102] and [NP_795970], respectively.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1476-
4598-8-40-S1.doc]
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Additional file 2

Overall strategy for co-expression of oncogenes in zebrafish. Stable
transgenic lines expressing zebrafish Smoal were generated using a Tol2-
based vector (A). Constitutively active human AKT1 (myrhAKT1) was
incorporated into a meganuclease-based vector (B). The zebrafish krt4
promoter could simultaneously activate smoal-EGFP and myrhAKT1
expression through Gal4VP16-UAS.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1476-
4598-8-40-S2.tiff]

Additional file 3

Expression patterns of transgenic line A. The data indicated that the
cytokeratin 4 promoter drove epithelial cells-specific expression (arrows)
of smoal-EGFP as shown by in situ hybridization against EGFP in 12 hpf
F1 embryos (A), and of tdTomato in a 24 hpf embryo generated by cross-
ing the Tg(krt4:Gal4VP16;14 x UAS:smoal-EGFP) and
Tg(UAS:tdTomato) transgenic fish (B). At adult stage, GFP was
detected predominantly in skin epithelial cells (C, arrow) and the retinal
ganglion cells (D, arrow).

Click here for file
|http://www.biomedcentral.com/content/supplementary/1476-
4598-8-40-S3.tiff]
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