403 research outputs found

    Microglia in prion diseases: Angels or demons?

    Get PDF
    Prion diseases are rare transmissible neurodegenerative disorders caused by the accumulation of a misfolded isoform (PrPSc) of the cellular prion protein (PrPC) in the central nervous system (CNS). Neuropathological hallmarks of prion diseases are neuronal loss, astrogliosis, and enhanced microglial proliferation and activation. As immune cells of the CNS, microglia participate both in the maintenance of the normal brain physiology and in driving the neuroinflammatory response to acute or chronic (e.g., neurodegenerative disorders) insults. Microglia involvement in prion diseases, however, is far from being clearly understood. During this review, we summarize and discuss controversial findings, both in patient and animal models, suggesting a neuroprotective role of microglia in prion disease pathogenesis and progression, or\u2014conversely\u2014a microglia-mediated exacerbation of neurotoxicity in later stages of disease. We also will consider the active participation of PrPC in microglial functions, by discussing previous reports, but also by presenting unpublished results that support a role for PrPC in cytokine secretion by activated primary microglia

    Antioxidant, anti-inflammatory, and microbial-modulating activities of essential oils: Implications in colonic pathophysiology

    Get PDF
    Essential oils (EOs) are a complex mixture of hydrophobic and volatile compounds synthesized from aromatic plants, most of them commonly used in the human diet. In recent years, many studies have analyzed their antimicrobial, antioxidant, anti-inflammatory, immunomodulatory and anticancer properties in vitro and on experimentally induced animal models of colitis and colorectal cancer. However, there are still few clinical studies aimed to understand their role in the modulation of the intestinal pathophysiology. Many EOs and some of their molecules have demonstrated their efficacy in inhibiting bacterial, fungi and virus replication and in modulating the inflammatory and oxidative processes that take place in experimental colitis. In addition to this, their antitumor activity against colorectal cancer models makes them extremely interesting compounds for the modulation of the pathophysiology of the large bowel. The characterization of these EOs is made difficult by their complexity and by the different compositions present in the same oil having different geographical origins. This review tries to shift the focus from the EOs to their individual compounds, to expand their possible applications in modulating colon pathophysiology

    Nutraceuticals in the Modulation of the Intestinal Microbiota: Current Status and Future Directions

    Get PDF
    Pharmaceutical interest in the human intestinal microbiota has increased considerably, because of the increasing number of studies linking the human intestinal microbial ecology to an increasing number of non-communicable diseases. Many efforts at modulating the gut microbiota have been made using probiotics, prebiotics and recently postbiotics. However, there are other, still little-explored opportunities from a pharmaceutical point of view, which appear promising to obtain modifications of the microbiota structure and functions. This review summarizes all in vitro, in vivo and clinical studies demonstrating the possibility to positively modulate the intestinal microbiota by using probiotics, prebiotics, postbiotics, essential oils, fungus and officinal plants. For the future, clinical studies investigating the ability to impact the intestinal microbiota especially by using fungus, officinal and aromatic plants or their extracts are required. This knowledge could lead to effective microbiome modulations that might support the pharmacological therapy of most non-communicable diseases in a near future

    Geraniol Treatment for Irritable Bowel Syndrome: A Double-Blind Randomized Clinical Trial

    Get PDF
    Geraniol is an acyclic monoterpene alcohol with well-known anti-inflammatory and antimicrobial properties which has shown eubiotic activity towards gut microbiota (GM) in patients with irritable bowel syndrome (IBS). Methods: Fifty-six IBS patients diagnosed according to Rome III criteria were enrolled in an interventional, prospective, multicentric, randomized, double-blinded, placebo-controlled trial. In the treatment arm, patients received a low-absorbable geraniol food supplement (LAGS) once daily for four weeks. Results: Patients treated with LAGS showed a significant reduction in their IBS symptoms severity score (IBS-SSS) compared to the placebo (195 vs. 265, p = 0.001). The rate of responders according to IBS-SSS (reduction ≥ 50 points) was significantly higher in the geraniol vs placebo group (52.0% vs. 16.7%, p = 0.009) mainly due to the IBS mixed subtype. There were notable differences in the microbiota composition after geraniol administration, particularly a significant decrease in a genus of Ruminococcaceae, Oscillospira (p = 0.01), a decreasing trend for the Erysipelotrichaceae and Clostridiaceae families (p = 0.1), and an increasing trend for other Ruminococcaceae taxa, specifically Faecalibacterium (p = 0.09). The main circulating proinflammatory cytokines showed no differences between placebo and geraniol arms. Conclusion: LAGS was effective in treating overall IBS symptoms, together with an improvement in the gut microbiota profile, especially for the IBS mixed subtype

    RNA interference as a key to knockdown overexpressed cyclooxygenase-2 gene in tumour cells

    Get PDF
    Silencing those genes that are overexpressed in cancer and contribute to the survival and progression of tumour cells is the aim of several researches. Cyclooxygenase-2 (COX-2) is one of the most intensively studied genes since it is overexpressed in most tumours, mainly in colon cancer. The use of specific COX-2 inhibitors to treat colon cancer has generated great enthusiasm. Yet, the side effects of some inhibitors emerging during long-term treatment have caused much concern. Genes silencing by RNA interference (RNAi) has led to new directions in the field of experimental oncology. In this study, we detected sequences directed against COX-2 mRNA, that potently downregulate COX-2 gene expression and inhibit phorbol 12-myristate 13-acetate-induced angiogenesis in vitro in a specific, nontoxic manner. Moreover, we found that the insertion of a specific cassette carrying anti-COX-2 short hairpin RNA sequence into a viral vector (pSUPER.retro) greatly increased silencing potency in a colon cancer cell line (HT29) without activating any interferon response. Phenotypically, COX-2 deficient HT29 cells showed a significant impairment of their in vitro malignant behaviour. Thus, the retroviral approach enhancing COX-2 knockdown, mediated by RNAi, proved to be an useful tool to better understand the role of COX-2 in colon cancer. Furthermore, the higher infection efficiency we observed in tumour cells, if compared to normal endothelial cells, may disclose the possibility to specifically treat tumour cells without impairing endothelial COX-2 activity

    Metabolic profiles of whole, parotid and submandibular/sublingual saliva

    Get PDF
    The detection of salivary molecules associated with pathological and physiological alterations has encouraged the search of novel and non-invasive diagnostic biomarkers for oral health evaluation. While genomic, transcriptomic, and proteomic profiles of human saliva have been reported, its metabolic composition is a topic of research: metabolites in submandibular/sublingual saliva have never been analyzed systematically. In this study, samples of whole, parotid, and submandibular/ sublingual saliva from 20 healthy donors, without dental or periodontal diseases, were examined by nuclear magnetic resonance. We identified metabolites which are differently distributed within the three saliva subtypes (54 in whole, 49 in parotid, and 36 in submandibular/sublingual saliva). Principal component analysis revealed a distinct cluster for whole saliva and a partial overlap for parotid and submandibular/sublingual metabolites. We found exclusive metabolites for each subtype: 2-hydroxy-3-methylvalerate, 3-methyl-glutarate, 3-phenylpropionate, 4-hydroxyphenylacetate, 4-hydroxyphenyllactate, galactose, and isocaproate in whole saliva; caprylate and glycolate in submandibular/sublingual saliva; arginine in parotid saliva. Salivary metabolites were classified into standard and non-proteinogenic amino acids and amines; simple carbohydrates; organic acids; bacterial-derived metabolites. The identification of a salivary gland-specific metabolic composition in healthy people provides the basis to invigorate the search for salivary biomarkers associated with oral and systemic diseases

    A Congenital Anterior Urethrocutaneous Fistula in a Boy Whose Mother Was Exposed to Ionizing Radiations: Case Report and Literature Review

    Get PDF
    Anterior congenital urethrocutaneous fistula is a rare anomaly that may present in an isolated fashion or in association with other anomalies of the genital urinary tract or anorectal malformations. A case of congenital anterior urethrocutaneous fistula nonassociated with other congenital anomalies in a 3-year-old male whose mother has been exposed to Chernobyl's nuclear fallout is described. The patient was successfully operated with no recurrence. We report a review of the literature about etiology and surgical strategy including the role of ionizing radiations. The congenital anterior urethrocutaneous fistula represents a rare malformation. The etiopathogenesis is unknown

    Peptides of the Constant Region of Antibodies Display Fungicidal Activity

    Get PDF
    Synthetic peptides with sequences identical to fragments of the constant region of different classes (IgG, IgM, IgA) of antibodies (Fc-peptides) exerted a fungicidal activity in vitro against pathogenic yeasts, such as Candida albicans, Candida glabrata, Cryptococcus neoformans, and Malassezia furfur, including caspofungin and triazole resistant strains. Alanine-substituted derivatives of fungicidal Fc-peptides, tested to evaluate the critical role of each residue, displayed unaltered, increased or decreased candidacidal activity in vitro. An Fc-peptide, included in all human IgGs, displayed a therapeutic effect against experimental mucosal and systemic candidiasis in mouse models. It is intriguing to hypothesize that some Fc-peptides may influence the antifungal immune response and constitute the basis for devising new antifungal agents

    Comparison Study of MS-HRM and Pyrosequencing Techniques for Quantification of APC and CDKN2A Gene Methylation

    Get PDF
    There is increasing interest in the development of cost-effective techniques for the quantification of DNA methylation biomarkers. We analyzed 90 samples of surgically resected colorectal cancer tissues for APC and CDKN2A promoter methylation using methylation sensitive-high resolution melting (MS-HRM) and pyrosequencing. MS-HRM is a less expensive technique compared with pyrosequencing but is usually more limited because it gives a range of methylation estimates rather than a single value. Here, we developed a method for deriving single estimates, rather than a range, of methylation using MS-HRM and compared the values obtained in this way with those obtained using the gold standard quantitative method of pyrosequencing. We derived an interpolation curve using standards of known methylated/ unmethylated ratio (0%, 12.5%, 25%, 50%, 75%, and 100% of methylation) to obtain the best estimate of the extent of methylation for each of our samples. We observed similar profiles of methylation and a high correlation coefficient between the two techniques. Overall, our new approach allows MS-HRM to be used as a quantitative assay which provides results which are comparable with those obtained by pyrosequencing

    Selective cyclooxygenase-2 silencing mediated by engineered E. coli and RNA interference induces anti-tumour effects in human colon cancer cells

    Get PDF
    Colorectal cancer (CRC) has an elevated incidence worldwide and represents one of the most aggressive human tumours. Many experimental data provide the evidence of a strong association between cyclooxygenase-2 (COX-2) enzyme overexpression and colon tumorigenesis. Furthermore, it has been demonstrated that the chronic use of non-steroidal anti-inflammatory drugs (NSAIDs, a class of COX-2 inhibitors), partially protects patients from CRC development and progression. Unfortunately, NSAIDs have been shown to induce severe side effects in chronically treated patients and, therefore, new strategies for selective COX-2 blockade are needed. In this paper we present an innovative COX-2 silencing approach mediated by RNA Interference (RNAi) which is a mechanism we have already described as a powerful tool to knockdown COX-2 protein in CRC cells. In particular, we developed an improved method to gain a highly selective COX-2 silencing in CRC cells by a tumour-dependent expression of anti-COX-2 short hairpin RNA (shCOX-2). Moreover, we efficiently delivered shCOX-2 expressing vectors in CRC cells, in vitro and ex vivo, by using engineered Escherichia coli strains, capable of infecting and invading human tumour cells (InvColi). Combining the highly selective shCOX-2 expression and the delivery of COX-2 silencers mediated by InvColi strains, we obtained a strong reduction of both proliferative and invasive behaviour of tumour cells and we also confirmed the pivotal role of COX-2 overexpression for the survival of CRC cells. Finally, ex vivo data showed a global anti-inflammatory and anti-tumour effect elicited by COX-2 silencing
    • …
    corecore