299 research outputs found

    Bioinformatics tools in predictive ecology: Applications to fisheries

    Get PDF
    This article is made available throught the Brunel Open Access Publishing Fund - Copygith @ 2012 Tucker et al.There has been a huge effort in the advancement of analytical techniques for molecular biological data over the past decade. This has led to many novel algorithms that are specialized to deal with data associated with biological phenomena, such as gene expression and protein interactions. In contrast, ecological data analysis has remained focused to some degree on off-the-shelf statistical techniques though this is starting to change with the adoption of state-of-the-art methods, where few assumptions can be made about the data and a more explorative approach is required, for example, through the use of Bayesian networks. In this paper, some novel bioinformatics tools for microarray data are discussed along with their ‘crossover potential’ with an application to fisheries data. In particular, a focus is made on the development of models that identify functionally equivalent species in different fish communities with the aim of predicting functional collapse

    The lesson of causal discovery algorithms for quantum correlations: Causal explanations of Bell-inequality violations require fine-tuning

    Full text link
    An active area of research in the fields of machine learning and statistics is the development of causal discovery algorithms, the purpose of which is to infer the causal relations that hold among a set of variables from the correlations that these exhibit. We apply some of these algorithms to the correlations that arise for entangled quantum systems. We show that they cannot distinguish correlations that satisfy Bell inequalities from correlations that violate Bell inequalities, and consequently that they cannot do justice to the challenges of explaining certain quantum correlations causally. Nonetheless, by adapting the conceptual tools of causal inference, we can show that any attempt to provide a causal explanation of nonsignalling correlations that violate a Bell inequality must contradict a core principle of these algorithms, namely, that an observed statistical independence between variables should not be explained by fine-tuning of the causal parameters. In particular, we demonstrate the need for such fine-tuning for most of the causal mechanisms that have been proposed to underlie Bell correlations, including superluminal causal influences, superdeterminism (that is, a denial of freedom of choice of settings), and retrocausal influences which do not introduce causal cycles.Comment: 29 pages, 28 figs. New in v2: a section presenting in detail our characterization of Bell's theorem as a contradiction arising from (i) the framework of causal models, (ii) the principle of no fine-tuning, and (iii) certain operational features of quantum theory; a section explaining why a denial of hidden variables affords even fewer opportunities for causal explanations of quantum correlation

    Extracting causal rules from spatio-temporal data

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-23374-1_2This paper is concerned with the problem of detecting causality in spatiotemporal data. In contrast to most previous work on causality, we adopt a logical rather than a probabilistic approach. By defining the logical form of the desired causal rules, the algorithm developed in this paper searches for instances of rules of that form that explain as fully as possible the observations found in a data set. Experiments with synthetic data, where the underlying causal rules are known, show that in many cases the algorithm is able to retrieve close approximations to the rules that generated the data. However, experiments with real data concerning the movement of fish in a large Australian river system reveal significant practical limitations, primarily as a consequence of the coarse granularity of such movement data. In response, instead of focusing on strict causation (where an environmental event initiates a movement event), further experiments focused on perpetuation (where environmental conditions are the drivers of ongoing processes of movement). After retasking to search for a different logical form of rules compatible with perpetuation, our algorithm was able to identify perpetuation rules that explain a significant proportion of the fish movements. For example, approximately one fifth of the detected long-range movements of fish over a period of six years were accounted for by 26 rules taking account of variations in water-level alone.EPSRCAustralian Research Council (ARC) under the Discovery Projects Schem

    Lithium distribution across the membrane of motoneurons in the isolated frog spinal cord

    Get PDF
    Lithium sensitive microelectrodes were used to investigate the transmembrane distribution of lithium ions (Li+) in motoneurons of the isolated frog spinal cord. After addition of 5 mmol·l–1 LiCl to the bathing solution the extracellular diffusion of Li+ was measured. At a depth of 500 m, about 60 min elapsed before the extracellular Li+ concentration approached that of the bathing solution. Intracellular measurements revealed that Li+ started to enter the cells soon after reaching the motoneuron pool and after up to 120 min superfusion, an intra — to extracellular concentration ratio of about 0.7 was obtained. The resting membrane potential and height of antidromically evoked action potentials were not altered by 5 mmol·l–1 Li+

    Relating the thermodynamic arrow of time to the causal arrow

    Full text link
    Consider a Hamiltonian system that consists of a slow subsystem S and a fast subsystem F. The autonomous dynamics of S is driven by an effective Hamiltonian, but its thermodynamics is unexpected. We show that a well-defined thermodynamic arrow of time (second law) emerges for S whenever there is a well-defined causal arrow from S to F and the back-action is negligible. This is because the back-action of F on S is described by a non-globally Hamiltonian Born-Oppenheimer term that violates the Liouville theorem, and makes the second law inapplicable to S. If S and F are mixing, under the causal arrow condition they are described by microcanonic distributions P(S) and P(S|F). Their structure supports a causal inference principle proposed recently in machine learning.Comment: 10 page

    Homophily and Contagion Are Generically Confounded in Observational Social Network Studies

    Full text link
    We consider processes on social networks that can potentially involve three factors: homophily, or the formation of social ties due to matching individual traits; social contagion, also known as social influence; and the causal effect of an individual's covariates on their behavior or other measurable responses. We show that, generically, all of these are confounded with each other. Distinguishing them from one another requires strong assumptions on the parametrization of the social process or on the adequacy of the covariates used (or both). In particular we demonstrate, with simple examples, that asymmetries in regression coefficients cannot identify causal effects, and that very simple models of imitation (a form of social contagion) can produce substantial correlations between an individual's enduring traits and their choices, even when there is no intrinsic affinity between them. We also suggest some possible constructive responses to these results.Comment: 27 pages, 9 figures. V2: Revised in response to referees. V3: Ditt

    Degree of explanation

    Get PDF
    Partial explanations are everywhere. That is, explanations citing causes that explain some but not all of an effect are ubiquitous across science, and these in turn rely on the notion of degree of explanation. I argue that current accounts are seriously deficient. In particular, they do not incorporate adequately the way in which a cause’s explanatory importance varies with choice of explanandum. Using influential recent contrastive theories, I develop quantitative definitions that remedy this lacuna, and relate it to existing measures of degree of causation. Among other things, this reveals the precise role here of chance, as well as bearing on the relation between causal explanation and causation itself

    Towards a Formulation of Quantum Theory as a Causally Neutral Theory of Bayesian Inference

    Get PDF
    Quantum theory can be viewed as a generalization of classical probability theory, but the analogy as it has been developed so far is not complete. Whereas the manner in which inferences are made in classical probability theory is independent of the causal relation that holds between the conditioned variable and the conditioning variable, in the conventional quantum formalism, there is a significant difference between how one treats experiments involving two systems at a single time and those involving a single system at two times. In this article, we develop the formalism of quantum conditional states, which provides a unified description of these two sorts of experiment. In addition, concepts that are distinct in the conventional formalism become unified: channels, sets of states, and positive operator valued measures are all seen to be instances of conditional states; the action of a channel on a state, ensemble averaging, the Born rule, the composition of channels, and nonselective state-update rules are all seen to be instances of belief propagation. Using a quantum generalization of Bayes' theorem and the associated notion of Bayesian conditioning, we also show that the remote steering of quantum states can be described within our formalism as a mere updating of beliefs about one system given new information about another, and retrodictive inferences can be expressed using the same belief propagation rule as is used for predictive inferences. Finally, we show that previous arguments for interpreting the projection postulate as a quantum generalization of Bayesian conditioning are based on a misleading analogy and that it is best understood as a combination of belief propagation (corresponding to the nonselective state-update map) and conditioning on the measurement outcome.Comment: v1 43 pages, revTeX4. v2 42 pages, edited for clarity, added references and corrected minor errors, submitted to Phys. Rev. A. v3 41 pages, improved figures, added two new figures, added extra explanation in response to referee comments, minor rewrites for readability. v4 44 pages, added "towards" to title, rewritten abstract, rewritten introduction with new table
    corecore