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Abstract. This paper is concerned with the problem of detecting causal-
ity in spatiotemporal data. In contrast to most previous work on causal-
ity, we adopt a logical rather than a probabilistic approach. By defining
the logical form of the desired causal rules, the algorithm developed in
this paper searches for instances of rules of that form that explain as
fully as possible the observations found in a data set. Experiments with
synthetic data, where the underlying causal rules are known, show that
in many cases the algorithm is able to retrieve close approximations to
the rules that generated the data. However, experiments with real data
concerning the movement of fish in a large Australian river system re-
veal significant practical limitations, primarily as a consequence of the
coarse granularity of such movement data. In response, instead of focus-
ing on strict causation (where an environmental event initiates a move-
ment event), further experiments focused on perpetuation (where envi-
ronmental conditions are the drivers of ongoing processes of movement).
After retasking to search for a different logical form of rules compatible
with perpetuation, our algorithm was able to identify perpetuation rules
that explain a significant proportion of the fish movements. For exam-
ple, approximately one fifth of the detected long-range movements of fish
over a period of six years were accounted for by 26 rules taking account
of variations in water-level alone.

1 Introduction

In this paper we address the problem of detecting causality in spatiotemporal
data. Broadly speaking one might approach this problem in two different ways,
which may be labeled probabilistic and logical. In a probabilistic approach, such
as is exemplified by a substantial body of deep and detailed work associated
particularly with researchers such as Pearl [10] and Spirtes et al. [11], one looks
for patterns of conditional dependence and independence in the data which ex-
hibit the characteristic “signatures” of genuinely causal correlations. A typical
outcome from this kind of approach is a list of functional dependencies between
the values of observational variables, resulting in statements to the effect that
one variable has a specific causal influence on another. These approaches may
be described as data-driven and in particular are appropriate if one has no prior
expectation of the form taken by causal laws.
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A logic-based approach, in contrast, is driven by a prior conception of the
form that causal laws might take, and the process of inferring laws from data
is targeted to the discovery of laws of that form. Experiments performed in
accordance with this conception may be thought of as investigating the extent
to which the given data can be described in terms of laws of a specified form, as
opposed to simply trying to discover general causal connections within the data.

We do not here argue for the merits of either approach over the other; the
work reported here takes the logical approach rather than the probabilistic, and
may be regarded as an investigation into the feasibility of the former.

Specifically, this paper explores the definition of a logical approach to causal
analysis of data, capable of generating causal rules of specific logical forms. In
§2 we introduce causation and perpetuation in the context of the past literature.
In §3 we develop the foundations of logical detection of causal rules, leading
to the construction of an algorithm for identifying causal rules from data. The
performance of this algorithm is explored first with synthetic data (§4), and
subsequently with real data about the environmental context for the movements
of fish in the Murray River, Australia (§5). A statistical analysis of these resulting
causal rules in §6 demonstrates that the causal rules generated do indeed have
explanatory structure in several key respects. Finally, §7 concludes the paper
with a look back at the implications for causation in geographic space.

2 Events, Processes, and Causality

The problem with causality, as highlighted by the philosopher David Hume in
the 18th century, is that causation is experientially indistinguishable from cor-
relation; that is, causal relations are not themselves overtly present in data but
are manifested through correlations which are. But correlations in data can also
arise by chance, unconnected with any of the causal mechanisms that in reality
gave rise to the data, leading to the appearance of causal dependencies where
none are in fact present. And even when a correlation is not the result of chance,
it does not mean that there must be a direct causal connection between the
correlates, which may instead be independently caused by some common un-
observed third element. Thus the problem for anyone seeking to detect causal
relations through the analysis of data is how to separate out the genuine cases
of causality from such non-causal correlations.

This problem is particularly acute if one takes the kind of “broad brush” view
of causality common to many probabilistic approaches. Probabilistic approaches
regard causation, appropriately enough, as a relation between events, but then
confuse matters by regarding an “event” as anything one can assign a probability
to. This is in stark contrast to our normal understanding of events as things that
happen, i.e., discrete changes in the world. Events in this sense play a central
role in causality, but it is important to recognise other forms of causal relation
involving processes or states, which differ from events in the manner in which
they occupy time [2, 9]. The importance of these temporal distinctions for causal
analysis was pointed out in [12, 13].



In the work reported here we take a more focused view of the logical structure
of causal relations, which is sensitive to the aspectual distinctions between states,
processes, and events in a way that probabilistic approaches typically are not.
The ontological framework of our research is taken from [7]; here we recapitulate
the main features of this approach.

We take the view that in its strictest sense the verb ‘cause’ should be un-
derstood as naming a relation between discrete events: that is, one event (such
as a ball hitting a window) may be said to cause another (such as the window
breaking). Loosely, we may also speak of one process causing another (e.g., the
action of the tides causing erosion) but properly considered this is a different
relation because it does not happen at a discrete moment but continues, in an
ongoing, cumulative fashion, over a period. For this reason we prefer the term
‘perpetuation’ for this: the action of the tides perpetuates the erosion process.

Relations of causation and perpetuation apply to individual events or pro-
cesses: a particular ball impact, at a definite location and time, causes a par-
ticular window breaking; the action of the tides along a particular stretch of
coastline over a particular period perpetuates the process of erosion along that
stretch during that period. But our understanding of the world expects such
individual instances to reflect general laws referring not to individual occurrent
tokens but to types. It is, however, generally impossible to formulate a valid
law of the form ‘Any event of type E1 causes an event of type E2’, since the
causation of an E2 instance by an E1 instance is typically dependent on some
appropriate enabling conditions: for example, if I turn the door handle and push
on the door, the door will open — but only if it is unlocked. The importance of
such conditions in causality was emphasised by [1], following [4], and indeed has
been widely recognised in the philosophical literature on causality (cf., [5]).

In the light of this, we prefer to formulate conditional causal rules along the
lines of ‘If events of types E1, E2, E3, . . . occur and conditions C1, C2, . . . hold,
then an event of type F will occur’. The conditions can in general be modelled as
states which either hold or not at each time; but such states may record the state
of a process variable, e.g., given a process of variation in water temperature, an
example of a state might be that the water temperature exceeds 15◦C. These
are the kinds of conditions we use in application examples below.

The distinctive feature of the work reported in this paper is that we are
looking not just for patterns in data that might betray the existence of causal
relationships, but patterns that arise from causal laws of specific forms. Our
search for correlations is thus guided by the forms of laws that we hope to find.
In the next section we describe the algorithm we use for this.

3 An algorithm for extracting causal rules from data

3.1 The Data

The algorithm takes as inputs one or more history files. A history file records the
occurrences of events and the values of process variables at every time-step over



some period T = [0, tmax], where time-steps are represented as non-negative
integers. Events and processes are collectively called occurrents: so the set of
occurrents, O, may be written as O = E ∪ P, where E and P are the sets of
events and processes respectively. Note that E ∩ P = ∅.

An event (properly an event-type) is represented for the purposes of the
algorithm as a function from time-steps to non-negative integers, i.e., for e ∈ E
we have e : T → Z+ ∪{0}, where e(t) is the number of distinct occurrences (i.e.,
event-tokens) of e at time t. In any actual application, of course, e will have
some semantics specifying its meaning in relation to the application domain;
but any such semantics is unknown, and irrelevant, to the algorithm. For many
applications the events of interest will be such that e(t) is always either 0 or 1,
but this is not invariably the case, and in particular it is not the case for the
domain of animal movement we describe later.

Similarly, a process is represented as a function from time-steps to real num-
bers, so that for p ∈ P we have p : T → R. Typically, though not invariably, they
are the discrete-time analogues of continuously-varying real-world functions —
for example a process might record the variation in water temperature or water
level at a particular station along a river.

3.2 Causal Rules

Amongst events, we regard some as possible causes and others as effects. These
refer to the roles they play in causal rules. The most general form of causal rule
we handle is:

R : [CausesR | ConditionsR]⇒ effectR after DelayR,

where

– CausesR ⊂ E is a set of events;
– ConditionsR is a set of conditions, where each condition c is an expression of

the form ‘v−c ≤ p ≤ v+
c ’, where v−c , v+

c ∈ R and p ∈ P;
– effectR ∈ E \ CausesR is an event distinct from any of the causes;
– DelayR is a delay interval [d−R, d+

R], where d−R, d+
R are integers such that 0 ≤

d−R ≤ d+
R.

In a condition, v−c and v+
c are the limits of a range within which the value of pc

must fall to satisfy it.
Inclusion of a delay interval does not mean that we are contemplating some

mysterious “action at a distance” across time, but simply that the transmission
of causal power from cause to effect is mediated by some process that is initiated
by the cause and culminates in the effect — e.g., at a traffic intersection, I press
the button for the pedestrian signal, and some seconds later (or minutes if I am
unlucky) the lights change to enable me to cross.

The causal rule R is activated at time t if and only if both:

1. For every e ∈ CausesR, e(t) > 0.



2. For every c ∈ ConditionsR, v−c ≤ pc(t) ≤ v+
c .

An activation of the rule at time t is explanatory if the effect predicted by the
rule does indeed occur, i.e.:

– For some d ∈ DelayR, effectR(t + d) > 0.

Conversely, an occurrence of effectR at time t is explained by rule R if some
activation of R is made explanatory by that occurrence of the effect, i.e.,

– For some d ∈ DelayR, R is activated at t− d.

It is possible for a rule-activation to explain more than one occurrence of its
effect, and also for an effect to be explained by more than one rule-activation.
These may be regarded as unsatisfactory situations from the perspective of some
real-world applications, but in others may be perfectly acceptable, e.g., one and
the same environmental event may trigger migration in many individual fish;
and migration by a fish may be triggered by two different environmental events
each of which would be sufficient on its own to cause it.

From the general form of rule as presented here, a number of special cases
can be identified that are of interest. If Conditions = ∅, we have an unconditional
rule, which can be written in simplified form as

R : CausesR ⇒ effectR after DelayR.

If DelayR = [d, d] we have a one-delay rule, which can be written as

R : [CausesR | ConditionsR]⇒ effectR after d

and in the special case d = 0 we have a simultaneous causation rule, written

R : [CausesR | ConditionsR]⇒ effectR.

For any of these rules it will sometimes be convenient to abbreviate the part
before the⇒ as antecedentR, which is neutral as to its composition out of causes
and conditions, e.g.,

R : antecedentR ⇒ effectR after DelayR.

3.3 The Problem

The problem which the algorithm is designed to solve may be stated simply as
follows: Given a data set in the form described in §3.1, we seek a set of rules R
which, as nearly as possible, accounts fully for the data, in the following sense:

1. For each t ∈ T and R ∈ R, if R is activated at t then it is explanatory, i.e.,
effectR occurs after an admissible delay.

2. For each occurrence of each effect f in the data, there is a rule R ∈ R which
explains it, i.e., f = effectR and R is activated within an admissible delay
time preceding the occurrence.



These rules can be roughly characterised as “no false positives” and “no false
negatives” respectively, though the precise interpretation of these terms in the
present context is delicate and will be discussed further below.

With real-world data it is unrealistic to expect to find a rule-set which fully
accounts for the data in this sense, which is why we add the caveat ‘as nearly as
possible’ to the problem statement. To interpret this we need to find a measure
of how nearly a rule-set fully accounts for the data. This is discussed in §3.4.

3.4 Evaluating a rule set

Given some data and a set of rules (however these have been discovered, whether
by the algorithm described here or in some other way), we need a principled way
of evaluating the rules with respect to the data. For this purpose two commonly
used measures are precision and sensitivity. In general, for a rule of the form ‘If
P then Q’ these are defined as

precision =
TP

TP + FP
sensitivity =

TP

TP + FN

where

– TP is the number of true positives, i.e., instances satisfying both P and Q,
– FP is the number of false positives, i.e., instances satisfying P but not Q,
– FN is the number of false negatives, i.e., instances satisfying Q but not P .

Our problem is how to define these quantities for a causal rule of the form

R : antecedentR ⇒ effectR after [d−, d+].

In particular, what do we mean by an ‘instance’?
In the case of TP , we could take either a cause-centred (cTP ) or an effect-

centred (eTP ) approach as follows:

– cTP is the number of explanatory activations of R
– eTP is the number of occurrences of effectR which are explained by R.

In general, these figures will be different. For the other two quantities of interest,
it is natural to count FP in the cause-centred way, and FN in the effect-centred
way, as follows:

– cFP is the number of non-explanatory activations of R
– eFN is the number of occurrences of effectR that are not explained by R

We now define cause-centred precision and effect-centred sensitivity as follows:

c-precision =
cTP

cTP + cFP
e-sensitivity =

eTP

eTP + eFN

Thus c-precision measures what fraction of the rule activations are explanatory,
and e-sensitivity measures what fraction of occurrences of the effect are explained
by the rule.

These definitions can be used to evaluate an individual rule; to evaluate a
set of rules R for the same effect we use



– cTP : the number of explanatory activations of a rule in R
– cFP : the number of non-explanatory activations of a rule in R
– eTP : the number of occurrences of effect explained by at least one rule in R
– eTP : the number of occurrences of effect not explained by any rule in R

The harmonic mean of the c-precision and e-sensitivity is called the F1 score
and provides a useful single measure against which rules can be ranked:

F1 = 2
( c-precision · e-sensitivity

c-precision + e-sensitivity

)
.

3.5 The algorithm

The algorithm is presented below as Algorithm 1. Here we give an informal
explanation of it to help the reader understand how it works, as well as some
pertinent observations. Note that, in the algorithm, we use F to refer to the set
of effects to be explained.

The algorithm is guided in its search for causal rules by the strict form to
which any such rule must adhere. For each effect f , and each subset E of the
events available to act as causes, we consider whether any of the data for f
can be explained by a rule whose cause-set is E.3 Such a rule could only be
activated at those times TE at which every event in E occurs; we can therefore
immediately discard any set E for which there are no such times, along with
any supersets of that set (line 5). If on the other hand TE is non-empty, we need
to consider whether each time in TE is followed by an occurrence of f within
dmax time-steps, where dmax is the maximum allowed delay for a rule (set by the
user).

Let DT be the set of all delays d in the range [0, dmax] for which some time
in TE is followed by an occurrence of f after a delay of d time steps. Any causal
rule generating some of these occurrences of f from E must have a delay interval
encompassing some of the delays in DT . Hence if DT is empty we can discard E
and all its supersets (line 10).

If E is still not discarded, then we have a set of times TE at which all the
putative causes in E occur, and for each of these times there may or may not
be an occurrence of f within a delay in the set DT . The times for which such an
occurrence exists are put in the set T+, the rest in T− (line 12).

If T− is empty, this means that whenever all of E occur, f occurs after a
suitable delay. Letting d− and d+ be the minimum and maximum delays in DT ,
we can set up the unconditional rule ‘E ⇒ f after [d−, d+]’ (line 15), and this
is guaranteed to generate no false positives for the data, i.e., to satisfy the first
condition in §3.3. (There may of course be false negatives since there may be
more than one rule for effect f , with different cause-sets.)

3 At line 3 of the algorithm we are required to iterate over the power set of E . Since this
leads to combinatorial explosion if E is too big, we in practice restrict the iteration
to subsets of E up to some predetermined size. In any case we are most likely to be
interested in rules with a small number of causes in the antecedent.



Algorithm 1: The rule-detection algorithm
1 Let R = ∅;
2 foreach f ∈ F do
3 foreach E ⊆ E do
4 Let TE be the set of t ∈ T such that e(t) ≥ 1 for every e ∈ E.;
5 if TE = ∅ then jettison E and all its supersets;
6 else
7 foreach t ∈ TE do
8 let Dt be the set of d ∈ [0, dmax] such that f(t + d) = 1;
9 Let DT =

S
t∈T Dt;

10 if DT = ∅ then jettison E and all its supersets;
11 else
12 Let T+ = {t ∈ TE | Dt 6= ∅} and T− = {t ∈ TE | Dt = ∅};
13 if T− = ∅ then **we have an unconditional rule**
14 Let d− = min(DT ) and d+ = max(DT );
15 R← R∪ {[E | ∅]⇒ f after [d−, d+]};
16 else **we look for conditional rules**
17 foreach p ∈ P do
18 Sort TE w.r.t. the value of p at each time. Call the

sorted list T s
E ;

19 Create a new list T w
E from T s

E such that the ith element
of T w

E is the number of elements of T+ occurring in the
subsequence of T s

E with indices in the range [i− h, i + h]
(where h is a pre-determined constant);

20 Now find all maximal subsequences of T w
E of length

greater than 2h + 1 in which the values are all positive;
21 foreach subsequence covering indices i1, . . . , in do
22 Let t0 and t1 be the i1th and inth elements of T s

E

and put v− = p(t0) and v+ = p(t1);
23 Let Dp

T =
S
{Dt | p(t) ∈ [v−, v+]} and let

d− = min(Dp
T ) and d+ = max(Dp

T );
24 R← R∪ {[E | v− ≤ p ≤ v+]⇒ f after [d−, d+]};
25 Remove from R any rule that is covered (see below) by another rule in R;

If on the other hand T− is not empty, then not all occurrences of E are
followed by f within the acceptable delay time. In this case, we might still find
an unconditional rule that admits exceptions (false positives), and if we are
interested in these we can relax the condition T− = ∅ at line 13. But with
this condition in place, we must proceed to the search for conditional rules
(lines 16–24). To this end we consider in turn each of the processes available
to supply conditions (remember that a condition takes the form v− ≤ p ≤ v−,
where [v−, v+] is the range within which the process variable p must fall for the
condition to be satisfied).

Suppose that in fact all the data for f could be accounted for by a single rule
‘[E | v− ≤ p ≤ v+] ⇒ f after [d−, d+]’. Since T− 6= ∅, there are occurrences of
E that are not followed by f within an appropriate delay. The non-occurrence



of f must be explained by the value of p being outside the range [v−, v+] at that
time. If, therefore, we sort the times in TE with respect to the value taken by p
at those times to give the sequence T s

E (line 18), marking each time “good” or
“bad” according as the effect f does or does not occur then, the “good” times
will form a consecutive run within the sequence, with the values of p at the start
and end points of this run bracketed by the “true” values v− and v+ — and this
is the maximal run of consecutive elements within the sequence for which this
is the case. If just one rule fully accounts for the data, a close approximation to
it (differing only in the precise value-range in the condition) can be discovered
by the above procedure.

In general, however, we expect there to be other rules, with the same ef-
fect, whose presence prevents the simple procedure above from working, it being
unlikely that the “good” times in the value-sorted sequence will form a single
consecutive run. In this case, two immediate remedies suggest themselves:

– On the one hand, we could simply take as our v− and v+ the smallest and
greatest values attained by p on T+. The resulting rule is guaranteed to
exclude any false negatives, since every actual occurrence of f within the
delay range is covered, but it may admit many false positives (the gaps in
the sequence of “good” points).

– On the other hand, since there is no single run of consecutive “good” values,
we could look for all such runs in the sequence and construct a new rule for
each, using the extreme p values within that run as our v− and v+ for that
rule. This method will create a set of rules for f which are guaranteed to
exclude false positives (since none of the rules will be activated at any of the
“bad” points) but at the cost of a proliferation of rules each of which allows
many false negatives.

The method actually used in the algorithm is a compromise between these two
approaches, and is found in practice to generate rules with fewer false positives
than the first and fewer false negatives than the second.

What we do is to run a sliding “window” of length 2h+ 1 along the sequence
T s

E (with suitable adjustments for the first and last h positions in the list),
recording in Tw

E the total numbers of “good” points within the window at each
position (line 19). This achieves a smoothing effect on the sequence, allowing us
to identify the ranges of values for p within which the occurrence of the effect is
more frequent than elsewhere. These show up as maximal runs of positive values
in Tw

E ; they are the ranges we use in the conditions for rules (lines 20-24).
Finally, having collected a set of rules for effect f , we discard any which are

superfluous because they are covered by other rules in the set (line 25). Rule R1

covers rule R2 with respect to the data so long as effectR1 = effectR2 (= f , say),
every occurrence of f in the data that is explained by R2 is also explained by
R1, and every non-explaining activation of R2 is also an activation of R1. In this
case R2 is superfluous and can be dropped from the rule-set.

It should be noted that the algorithm, as currently constituted, can only
generate rules with |ConditionsR| ≤ 1.



4 Working with synthetic data

The algorithm was first tested on synthetic data sets, generated using artificial
causal rules. This form of synthetic data set enabled investigation of how well
the algorithm could retrieve known rules from the data. For this it was necessary
to: (a) define occurrents to feature in the antecedents of the rules; (b) generate
histories for those occurrents over an adequate number of time-steps; and then
(c) determine the activation history for each rule and thereby generate histories
for the effects of the rules. The occurrent histories and effect histories were then
used as inputs to the rule-detection algorithm.

Several types of occurrent were defined, as follows:

1. Events:
– Periodic events, specified by the number of time-steps from one occur-

rence to the next
– Random events, specified by the probability of occurrence at any time-

step
2. Processes:

– Sinusoidal processes, specified by the period
– Gaussian processes, stipulated to have mean 0 and standard deviation 1
– Markovian processes, in which the differences between the values at con-

secutive time-steps have a Gaussian distribution with mean 0 and stan-
dard deviation 0.1.

4.1 Experiment 1

For this first set of experiments, the occurrents used were those listed in Table
1, and the rules used were those listed in Table 2. It will be noted that some of
the occurrents did not feature in any of the rules. This does not mean that they
played no role in any of the experiments with this rule-set. They were available to
the rule-detection program, which could therefore look for rules featuring these
occurrents. Thus these occurrents acted as “red herrings”, and indeed it will be
seen from the results in Table 3 that in two cases the best rules found did feature
occurrents from this set (pGauss2 and pMarkov2).

Three runs were performed with this set of occurrents and rules, each with
1000 time-steps. For each rule found by the algorithm, the c-precision and e-
sensitivity were computed, and from these the F1 score was derived. For each
effect, the rule with highest F1 score is reported in Table 3. It will be noted
that the rule for effect f1 is deterministic, since the antecedent is a periodic
event, with the same occurrences in each run, and the delay interval is a single
point. This does not mean that the detection program has an identical task for
this effect in all three runs, since it does not “know” in advance that it was
generated by a rule of that type, and therefore is also looking for rules whose
activations may differ between the runs. None the less, both for this effect and
the non-deterministic f2 and f3, the program reliably found the correct rule on
each occasion; these are, of course, the effects generated by unconditional rules.



Occurrent Type Parameters

pSineHigh sinusoidal process period 10
pSineMedium sinusoidal process period 18
pSineLow sinusoidal process period 32
pGauss1 Gaussian process
pGauss2 Gaussian process
pMarkov1 Markovian process
pMarkov2 Markovian process

ePeriHigh periodic event period 9
ePeriMedium periodic event period 24
ePeriLow periodic event period 50
eRandomHigh random event probability 0.4
eRandomMedium random event probability 0.25
eRandomLow random event probability 0.1

Table 1. Occurrents used in Experiment 1

Rule Activations

ePeriLow⇒ f1 after 5 20, 20, 20
ePeriMedium⇒ f2 after [3, 6] 42, 42, 42
ePeriHigh, eRandomHigh⇒ f3 after [0, 4] 42, 57, 54
[eRandomHigh | 0 ≤ pSineMedium ≤ 1]⇒ f4 after 2 200, 238, 226
[eRandomMedium | 0 ≤ pSineHigh ≤ 1]⇒ f5 after [0, 3] 162, 149, 152
[ePeriHigh, eRandomHigh | 0 ≤ pGauss1]⇒ f6 after 3 21, 26, 27
[ePeriMedium, eRandomMedium | 0 ≤ pMarkov1]⇒ f7 after [2, 4] 4, 7, 9

Table 2. Rules used to generate data for Experiment 1, with the number of times that
each was activated in 1000 time steps for runs 1, 2, and 3.

With the conditional rules, the program had a less easy time of it, but still
managed to find good approximations to the “true” rules in almost every case.
The exceptions were for f7 in runs 1 and 3, where the program identified the
correct causes, but mistook the conditions, attributing the effect to conditions
involving the processes pMarkov2 and pGauss2 which in fact figure in none of the
correct rules. The poor performance for this effect can be explained by the fact
that in each run it occurred at less than 1% of the time-steps, so there was not
enough relevant data for the rule-detection algorithm to work on, with the result
that a spurious non-causal correlation happened to provide a better fit to the
data than the best approximation to the true rule discoverable by the algorithm.

In summary, these and other experiments performed with synthetic data
demonstrated that the algorithm was, in most cases, able to retrieve from syn-
thetic data the causal rules that generated it. In instances where the algorithm
failed, there were frequently plausible explanations for that failure, such as a
lack of relevant data generated by a specific rule.



Run Best rules found CP,ES

1 ePeriLow⇒ f1 after 5 100, 100
2 ePeriLow⇒ f1 after 5 100, 100
3 ePeriLow⇒ f1 after 5 100, 100

1 ePeriMedium⇒ f2 after [3, 6] 100, 100
2 ePeriMedium⇒ f2 after [3, 6] 100, 100
3 ePeriMedium⇒ f2 after [3, 6] 100, 100

1 ePeriHigh, eRandomHigh⇒ f3 after [0, 4] 100, 100
2 ePeriHigh, eRandomHigh⇒ f3 after [0, 4] 100, 100
3 ePeriHigh, eRandomHigh⇒ f3 after [0, 4] 100, 100

1 [eRandomHigh | − 0.342 ≤ pSineMedium ≤ 0.985]⇒ f4 after [0, 4] 92, 100
2 [eRandomHigh | 0.643 ≤ pSineMedium ≤ 0.985]⇒ f4 after [0, 4] 100, 76
3 [eRandomHigh | − 0.342 ≤ pSineMedium ≤ 0.985]⇒ f4 after [0, 4] 97, 100

1 [eRandomMedium | − 0.588 ≤ pSineHigh ≤ 0.951]⇒ f5 after [1, 5] 86, 90
2 [eRandomMedium | 0 ≤ pSineHigh ≤ 0.951]⇒ f5 after [0, 4] 100, 100
3 [eRandomMedium | − 0.588 ≤ pSineHigh ≤ 0.951]⇒ f5 after [2, 6] 71, 84

1 [ePeriHigh, eRandomHigh | 0.03 ≤ pGauss1 ≤ 1.959]⇒ f6 after 3 100, 100
2 [ePeriHigh, eRandomHigh | 0.033 ≤ pGauss1 ≤ 1.96]⇒ f6 after 3 100, 100
3 [ePeriHigh, eRandomHigh | 0.065 ≤ pGauss1 ≤ 2.975]⇒ f6 after 3 100, 100

1 [ePeriMedium, eRandomMedium | − 4.249 ≤ pMarkov2 ≤ −0.76]⇒ f7 after [2, 3] 100, 75
2 [ePeriMedium, eRandomMedium | 0 ≤ pMarkov1 ≤ 1.761]⇒ f7 after [2, 4] 100, 100
3 [ePeriMedium, eRandomMedium | 0.482 ≤ pGauss2 ≤ 1.543]⇒ f7 after [2, 4] 100, 67

Table 3. The best rule discovered by the program for each effect in each run of Ex-
periment 1, with c-precision and e-sensitivity (expressed as percentages)

5 Working with real data

5.1 Fish movement data set

The real-world data set used for this study was one we had previously worked
with, as described in [3]. Lyon and collaborators [8] gathered data on fish move-
ment in the Murray River system in south-eastern Australia. Over 1000 individ-
ual fish were tagged with radio transmitters, and their movements were mon-
itored by 18 river-side radio receivers located at strategic positions along the
river, which thereby divided the river and its tributaries into 24 zones, labelled
a–x (see Figure 1). The movement of tagged fish between the zones was tracked
over a period of six years, during which time a number of environmental variables
were also monitored, including water temperature, water level, and salinity. The
environmental variables were recorded at a coarser spatial granularity than the
fish movements, since the recording stations were more widely spaced along the
river than the radio receivers: thus the values for these variables in a zone are
taken to be those recorded at the nearest station to the zone.

The data thus consisted of records of the following types:

– For each environmental variable, a record of its value at each recording sta-
tion on each day of the period of study;
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Fig. 1. Map of study area, Murray River, Australia, showing river zones a–x

– A collection of records of zone-boundary crossings by individual fish, where
each record takes the form ‘fish i moves from zone z1 to zone z2 on day d’.

The aim of our study was to determine to what extent the movement of fish was
causally influenced by the variations in the environmental variables.

To this end, fish-movement event types were defined as follows. For each pair
z1, z2 of adjacent zones, where z2 is downstream from z1, the event z1\z2 occurs
whenever a fish moves from z1 to z2, and the event z2/z1 occurs whenever a fish
moves from z2 to z1. Note that it is possible for there to be several occurrences
of any one of these events on any given day.

Two sets of experiments were performed using this data, which are reported
in the next two sections.

5.2 Experiment 2

For this experiment, we looked for unconditional rules relating fish movement
events to a certain set of events defined in terms of the environmental variables.
For each environmental variable v and each group of zones G relating to a given
recording station for that variable, we defined the event v3q(G) as occurring
whenever the value of v recorded at G crossed from the third to the fourth
quartile of its range. Thus for example the event wl3q(cd) stands proxy for ‘onset
of high water level in zones c and d’.

The algorithm was asked to look for rules with these quartile-boundary cross-
ing events as causes, and the fish-movement events as effects. We did not pursue
this line of enquiry beyond the initial stages as it became clear that the re-
sults were somewhat disappointing. Here we present just those results obtained
when we looked for rules relating the environmental events wl3q(cd), wl3q(efgh),
wl3q(ijklm) and the downstream boundary-crossing events c\d, d\e, e\f, f\g, g\h,
h\i, i\n, k\j, m\k. Only 26 rules were found, all with F1 scores below 30%. The
highest ranking rules, with their F1 scores, are listed in Table 4.



Rule F1

wl3q(efgh)⇒ d\e after [3, 10] 0.29
wl3q(cd)⇒ d\e after [0.10] 0.26
wl3q(cd)⇒ e\f after [1, 10] 0.24
wl3q(efgh)⇒ e\f after [1, 9] 0.24
wl3q(ijklm)⇒ i\n after [0, 9] 0.24
wl3q(cd)⇒ c\d after [5, 8] 0.20
wl3q(cd)⇒ f\g after [0, 9] 0.20
wl3q(efgh)⇒ c\d after [3, 9] 0.16
wl3q(efgh)⇒ f\g after [0, 10] 0.16

Table 4. The top-ranking rules by F1 score from Experiment 2 (part)

On the face of it, some of these rules make more sense from a spatial point
of view than others. We would expect the strongest causal influence on a fish’s
movement between two zones to come from the environmental conditions within
the zone from which the fish is moving. Thus of the first two rules in the table,
the one relating d\e to wl3q(cd) is prima facie more “sensible” than the one
relating the same effect to wl3q(efgh). In fact the presence of both rules, with
comparable F1 scores, reflects the high correlation between the values of wl3q(cd)
and wl3q(efgh) (correlation coefficient 0.9768). This high correlation explains
why each rule with the former event as cause is paired with a rule with the latter
event, with similar F1 score. Equally, the low correlations between these two
values and wl(ijklm) (−0.031 and −0.047 respectively) account for the absence
of similar pairings with rules involving that event.

5.3 Discussion

The disappointingly low F1 scores found in Experiment 2 prompted us to revise
our ideas about the kind of causal rule we should be looking for. The initial idea
was that initiation of fish movement should be triggered by some environmental
event, in accordance with the principle that events are caused by events, so
quartile-boundary crossing was used as a way of deriving candidate events from
the processes provided in the data. However, there is something rather arbitrary
about this choice of events, and coupled with the fact that the crossing of zone-
boundaries is also a rather crude proxy for initiation of fish-movement, it is not
surprising that the rules discovered, although not implausible, were rather weak.

On reflection, it seemed that rather than looking for rules relating environ-
mental events to the initiation of fish movement, it would be more fruitful to
look for rules relating environmental processes to the fish movement, considered
as a process itself. The kind of causality considered in our third experiment is
thus perpetuation rather than causation in the narrow sense, the zone-crossing
events now being considered as proxies for upstream or downstream movement
processes.



6 Experiment 3: Exploring processes and perpetuation

In order to handle perpetuation, we need to specify rules without causes in the
antecedent. To model this, we require rules in which Causes is empty, so that all
the burden of causality is borne by the conditions. In order to work with this kind
of rule using the algorithm, a “dummy” event was generated which occurred at
every time-step. This was achieved simply by defining the event (called always)
as a random event with probability 1. For clarity, the rule

[always | Conditions]⇒ effect after Delay

will be written in shorter form as

Conditions ⇒ effect after Delay.

We shall call these “Always-rules”.
This section reports on a systematic exploration of the rules generated by

the algorithm when tasked with identifying perpetuation in the fish data set.
For brevity, we focus on the rules generated from causal analysis of data about
water levels and movement. However, the same analysis has been conducted on
the water-temperature data with congruent results.

6.1 Support

The algorithm is able to identify a large number of candidate rules from the
data set. For example, more than 1000 rules are found for each upstream and
downstream movement in response to water level. However, many of these rules
are derived from conditions or events that occur only a handful of times. Fig-
ure 2 shows a scatterplot of e-sensitivity and c-precision of rules generated for
upstream and downstream movement in response to water levels.

Figure 2 highlights those rules that relate to less than 10 instances of con-
ditions (orange “+”) or to less than 10 instances of effects (blue “×”). It is im-
mediately noticeable that rules supported by few condition instances also have
lower e-sensitivity , and similarly rules supported by few effect instances tend
to have lower c-precision. Hypothesis testing confirms this visual expectation,
significant at the 1% level. Taking this result as a evidence of overfitting, those
rules that were supported by less than 10 condition or effect instances in the
data were excluded from the subsequent analyses.

6.2 Spatial coincidence

Next we examined the spatial coincidence between conditions and effects. The
causal analysis is agnostic about whether an effect is in any way spatially related
to its condition. As in Experiment 2 (§5.2), it was found that many of the rules
generated relate conditions in one zone to effects in a different zone. However,
one might hope that “sensible” rules would relate conditions in one zone to
effects in the same zone.
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Fig. 2. Scatterplot of rule e-sensitivity against c-precision, highlighting rules with fewer
than 10 instances of conditions (orange “+”) and fewer than 10 instances of effects (blue
“×”).

We tested whether those rules that related conditions to spatially proximal
effects (i.e., where the condition was spatially coincident with the start of move-
ment) tended to have higher F1 scores than rules that related conditions to
spatially distal effects. A non-parametric Wilcoxon rank sum hypothesis test
indicated that there was no evidence to support the hypothesis that spatially
coincident rules have higher F1 scores (p = 0.39 for upstream and p = 0.88
for downstream movement, which leads us to fail to reject the null hypothesis
that proximal and distal conditions are drawn from the same population of F1

scores).
Thus, as in §5.2, the data do not support the expectation that F1 scores

are higher for spatially proximal effects; indeed it appears that rules that relate
conditions to distal effects are just as likely to have good c-precision and e-
sensitivity as those that relate conditions to proximal effects. As we have already
seen, such rules can potentially occur both as an effect of spatial autocorrelation
in conditions and as a granularity effect (cf. §5.2). Nevertheless, we restricted
our subsequent analyses to examine only “sensible” rules (where condition and
effects are spatially proximal) on the grounds that such rules are more meaningful
(even if our data did not indicate that they were statistically distinct).

6.3 Shuffled data

In this context, we examined the degree to which the rules might still relate to
meaningful patterns, rather than arbitrary overfitting, by repeating the causal
analysis with a “shuffled” data set. In our shuffled data set, observations of envi-
ronmental variables were arbitrarily reassigned to randomly selected zones (e.g.,
the water level in zone a might be reassigned to zone f at time t1 and reassigned



to zone p at time t2, and so on). This process ensures that any structure in
the data resulting from causal relationships is lost, while still allowing compar-
ison with the unshuffled data set (since the movements are unchanged, and the
distribution of the total set of environmental variables is unchanged).

There are two main reasons in this case for preferring shuffling to more con-
ventional cross-validation (where the algorithm results are applied to a reserved
portion of the data). First, cross-validation is sensitive to how the data set is
partitioned. Spatial, seasonal, and longer-term variations (including drought con-
ditions in the earlier years of the study) are expected to lead to statistical non-
stationarity in the data. Consequently, by partitioning the data, especially with
respect to time or space, we would run the risk that the reserved portion exhibits
different properties to the training data. Second, cross validation cannot yield
information about the “correct” rules, since (unlike in our experiments with syn-
thetic data) we have no ground truth in the form of causal rules with which to
compare the results, such rules being manifested only through correlations in
the data (as discussed in §2). Cross-validation will only tell us how sensitive our
results are to partitions of the data. This information is already implicitly avail-
able in the support for each rule, and indeed rules with low support are discarded
anyway (§6.1). By contrast, shuffling allows us to create a second data set for
cross-validation that has identical statistical properties (same numbers, timing,
and locations of movement events, same numbers and distributions of process
variables) to the original, unshuffled data. Any spatial relationships between
causes and effects are thus scrambled in the shuffled data set. As a consequence,
any rules inferred from the shuffled data are a priori examples of overfitting, and
any difference between the results for the unshuffled and shuffled data sets can
be ascribed to underlying spatial patterns in the unshuffled data set.

Figure 3 shows the boxplots of F1 scores for rules generated from both shuffled
and unshuffled data sets. In all cases, the F1 scores for the unshuffled data set
are significantly higher (at the 1% level, p < 0.0001) than for the shuffled data
set. Thus we may infer that the rules generated do indeed derive from some
meaningful patterns of movement, and are not purely overfitting.

6.4 Condition value ranges

Looking at the rules themselves, it was noticeable that the size of the value
range in the antecedent (condition) for a rule was strongly correlated with the
F1 score for that rule (Figure 4). In other words, rules with larger ranges for the
environmental variables in the antecedent tended to be associated with larger F1

scores. This is encouraging as, in general, such rules can be regarded as stronger:
they “say more,” since they make assertions about a wider range of instances
and therefore it takes less to falsify them. (Conversely, rules with larger delay
intervals can be regarded as weaker, since they “say less” about precisely what
effects are expected to result from a condition.)
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Fig. 3. Boxplot of F1 scores for rules generated from shuffled and unshuffled data sets.
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Fig. 4. Scatterplot of condition interval length against F1 score.

6.5 Top-ranked rules

Finally, we looked at the top-ranked rules (in terms of F1 score) for each effect,
in Table 5. In total, these 15 rules accounted for more than 20% of all upstream
movements found in the data set. Combined with the 11 top-ranked rules for
downstream movement, which accounted for more than 18% of all downstream
movements, a total of 26 rules accounted for a significant minority (approxi-
mately one-fifth) of all movements. Given that water level is but one potential
driver of movement, and that our rules take but one, simple form, this small set



of rules does seem to provide a surprisingly compact representation of almost
one fifth of the data set.

Best rule found F1 score

2.79 ≤ wl(cd) ≤ 4.72⇒ d/c after [0, 5] 0.32
2.39 ≤ wl(efgh) ≤ 5.03⇒ e/d after [0, 5] 0.32
2.81 ≤ wl(efgh) ≤ 5.03⇒ f/e after [0, 5] 0.38
1.77 ≤ wl(efgh) ≤ 1.92⇒ g/f after [0, 5] 0.25
0.77 ≤ wl(efgh) ≤ 1.55⇒ h/g after [0, 5] 0.30
126.41 ≤ wl(ijklm) ≤ 131.53⇒ i/h after [0, 5] 0.45
126.85 ≤ wl(ijklm) ≤ 128.69⇒ i/j after [0, 5]∗ 0.39
126.98 ≤ wl(ijklm) ≤ 128.16⇒ j/i after [0, 5]∗ 0.36
126.89 ≤ wl(ijklm) ≤ 126.92⇒ j/k after [4, 5] 0.26
124.67 ≤ wl(np) ≤ 124.75⇒ n/i after [0, 5] 0.26
1.60 ≤ wl(or) ≤ 6.75⇒ o/n after [0, 5] 0.46
3.02 ≤ wl(or) ≤ 6.75⇒ r/o after [0, 5] 0.62
2.24 ≤ wl(stuv) ≤ 6.40⇒ s/r after [0, 5] 0.42
2.33 ≤ wl(stuv) ≤ 6.40⇒ u/s after [0, 5] 0.58
2.78 ≤ wl(stuv) ≤ 6.40⇒ v/u after [0, 5] 0.48

Table 5. The best rules discovered for each upstream movement effect. *Note that
zones i and j meet at a confluence, so it is possible to move upstream into j from i
and upstream into i from j

7 Conclusions and further work

We have developed the foundations of an algorithm that is able to identify the
instances of rules of a particular logical form that best describe a given data-set.
The approach can handle a range of logical forms, including simple causation,
causation with conditional rules, and perpetuation. Our experiments show that
for synthetic data, where the underlying causal rule is known, the approach is
able to derive close approximations of the underlying causal rules from data.

In the case of real data, however, granularity effects may often confound an
attempt to derive strict causation, where one event initiates another. In our
example of fish movement, for example, the spatial and temporal granularity
of the data (movement between granular zones of tens of kilometers and with
a finest temporal granularity of one day), our algorithm struggles to identify
strict causal relationships. However, by tasking the algorithm to look instead
for perpetuation rules (termed in our system “Always-rules”), the algorithm is
able to identify a suite of rules that compactly describe the data. Amongst our
key results are included, considering rules relating fish movement to water level
alone:



– the rules generated do relate to meaningful structure in the movement data,
describing movements that are significantly different from random move-
ments;

– the top-ranked rules in each zone compactly describe approximately 20% of
the fish movements.

While this study has demonstrated the potential of our approach, future work
on a much wider range of data sets is needed to further validate our initial re-
sults (in particular with finer-granularity information for events and process vari-
ables). Beyond this, comparison with probabilistic alternatives would assist both
in validating our results and in further elucidating the practical implications of
our logical approach. In the longer term, an integration of both probabilistic and
logical approaches may be advantageous. It is also likely that, in moving towards
operational data-mining tools for identifying causal relationships in movement
data, we can complement our algorithm with visualisation capabilities for assist-
ing users with sorting and filtering inferred rules. More broadly, we believe that
visualisation of causal spatial rules could be a fruitful area for future research.

Finally, it is worth reflecting on the secondary role played in our account of
causation by space, when compared with time. Cause and time are intimately
linked through the familiar maxim that an effect cannot precede its cause, a
reflection of the asymmetrical directedness of time. Since space exhibits no such
directionality, there is no comparable maxim relating cause and space. Space
and time do, however, share the attribute of extension, which gives rise to the
measures of distance and duration. A general expectation for causality is that
causal influence should be proximal with respect to both space and time: that
is, we expect an effect to be spatially and temporally close to its cause (compare
our remarks in [3] commenting on [6]). Where we find that this is apparently not
the case — where a cause at one place and time leads to an effect at a distant
place after a time delay — we normally suppose this to be explicable in terms of
some unobserved process carrying the causal influence from the cause location
to the effect location. But precisely because the process is unobserved, it is not
possible for a mechanism that extracts causal rules from data to detect it, with
the result that spatial linkages between cause and effect may, at least for some
types of data set, show up only weakly, if at all, in the analysis.
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