101 research outputs found

    Optical study of the polar BM CrB in low accretion state

    Full text link
    This paper presents a spectral and photometric study of the poorly studied polar BM CrB. Three states of the polar brightness and signs of transition from one-pole to two-pole accretion mode were found by an analysis of ZTF data. It is shown that the transition from the low state to the high state changes the longitude of the main accretion spot (by β‰ˆ17∘\approx 17^{\circ}) and increases its elongation (by β‰ˆ10∘\approx 10^{\circ}). The spectra contain Zeeman absorptions of the HΞ±\alpha line which are formed at a magnetic field strength of 15.5Β±115.5\pm1 MG. These absorptions are likely produced by a cold halo extending from the accretion spot at β‰ˆ1/4\approx {^1/_4} of the white dwarf radius. Modeling of the behavior of the HΞ±\alpha emission line shows that the main source of emission is the part of the accretion stream near the Lagrangian point L1_1, which is periodically eclipsed by the donor star. The spectra exhibit a cyclotron component formed in the accretion spot. Its modeling by a simple accretion spot model gives constraints on the magnetic field strength B=15βˆ’40B=15-40 MG and the temperature Te≳15T_e\gtrsim15 keV

    Reactive magnetron plasma modification of electrospun PLLA scaffolds with incorporated chloramphenicol for controlled drug release

    Get PDF
    Surface modification with the plasma of the direct current reactive magnetron sputtering has demonstrated its efficacy as a tool for enhancing the biocompatibility of polymeric electrospun scaffolds. Improvement of the surface wettability of materials with water, as well as the formation of active chemical bonds in the near-surface layers, are the main reasons for the described effect. These surface effects are also known to increase the release rate of drugs incorporated in fibers. Herein, we investigated the effect of plasma modification on the chloramphenicol release from electrospun poly (lactic acid) fibrous scaffolds. Scaffolds with highβ€”50 wt./wt.%β€”drug content were obtained. It was shown that plasma modification leads to an increase in the drug release rate and drug diffusion coefficient, while not deteriorating surface morphology and mechanical properties of scaffolds. The materials’ antibacterial activity was observed to increase in the first day of the experiment, while remaining on the same level as the unmodified group during the next six days. The proposed technique for modifying the surface of scaffolds will be useful for obtaining drug delivery systems with controlled accelerated release, which can expand the possibilities of local applications of antibiotics and other drugs

    ВивчСння Π²ΠΏΠ»ΠΈΠ²Ρƒ ΠΊΠΎΠΌΠ±Ρ–Π½ΠΎΠ²Π°Π½ΠΎΡ— Π΄Ρ–Ρ— фотосСнсибілізатора Ρ– Π½ΠΈΠ·ΡŒΠΊΠΎΡ–Π½Ρ‚Π΅Π½ΡΠΈΠ²Π½ΠΎΠ³ΠΎ Π»Π°Π·Π΅Ρ€Π½ΠΎΠ³ΠΎ Π²ΠΈΠΏΡ€ΠΎΠΌΡ–Π½ΡŽΠ²Π°Π½Π½Ρ Π½Π° ΠΊΡ–Π»ΡŒΠΊΡ–ΡΠ½ΠΈΠΉ склад ΠΌΡ–ΠΊΡ€ΠΎΡ„Π»ΠΎΡ€ΠΈ Π·ΡƒΠ±Π½ΠΎΠ³ΠΎ Π½Π°Π»ΡŒΠΎΡ‚Ρƒ

    Get PDF
    The effect of low-intensity laser radiation (LILR) on the background of a photosensitizer (ethacridine lactate) on selective elimination of pathogenic and conditionally pathogenic microorganisms has been studied. Taking into account antiseptic properties of ethacridine lactate the maximally possible time of influence of ethacridine lactate as a photosensitizer should be set. It has been found that after the influence of rivanol (ethacridine lactate) within 1.5-3 minutes the bactericidal action on microorganisms is observed. The effect of antiseptic in the interval from 30 to 60 seconds was not accompanied with the expressed quantitative change of the microbial population. The second stage of the research was identification of microorganisms sensitivity to various concentrations of the photosensitizer. As a photosensitizer the aqueous solution of ethacridine lactate in the concentrations of 0.1; 0.05; 0.01% was used. The results obtained allow to conclude that the concentration of 0.1% solution of ethacridine lactate increases the sensitivity of microorganisms to the effects of low-intensity laser radiation. During the experiment the combined impact of the antimicrobial activity of 0.1% solution of ethacridine lactate and blue spectrum laser radiation has been determined; it is manifested by decrease in the number of CFU/ml of the total microflora of the dental plaque. The number of CFU is reduced from 14.3 Β± 0.12 . 103/ml up to 2.4 Β± 0.3 . 102/ml after exposure (Table 1). Comparing the data of the control (the initial number of the colonies grown) and the experiment (the number of the colonies grown after the photoactivated disinfection) we have found that the antibacterial action of photoactivated disinfection depends directly on duration of exposure. Thus, the effectiveness of combined use of a photosensitizer with LILR is 1.2 times higher than that of ethacridine lactate (the exposure time is 60 seconds), and 2.0 times higher than the antimicrobial effect of the laser blue spectrum (the exposure time is 120 seconds).Π’ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΌ исслСдовании ΠΈΠ·ΡƒΡ‡Π°Π»ΠΈ влияниС ΠΠ˜Π›Π˜ Π½Π° Ρ„ΠΎΠ½Π΅ фотосСнсибилизатора (этакридина Π»Π°ΠΊΡ‚Π°Ρ‚Π°) Π½Π° ΡΠ΅Π»Π΅ΠΊΡ‚ΠΈΠ²Π½ΡƒΡŽ ΡΠ»ΠΈΠΌΠΈΠ½Π°Ρ†ΠΈΡŽ ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π½Ρ‹Ρ… ΠΈ условно-ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π½Ρ‹Ρ… ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ². Учитывая Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ этакридина Π»Π°ΠΊΡ‚Π°Ρ‚Ρƒ присущи свойства антисСптика, слСдовало ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ максимально Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΠ΅ врСмя воздСйствия этакридина Π»Π°ΠΊΡ‚Π°Ρ‚Π° ΠΊΠ°ΠΊ фотосСнсибилизатора. УстановлСно, Ρ‡Ρ‚ΠΎ послС воздСйствия Ρ€ΠΈΠ²Π°Π½ΠΎΠ»Π° (этакридина Π»Π°ΠΊΡ‚Π°Ρ‚Π°) Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 1,5-3-Ρ… ΠΌΠΈΠ½ΡƒΡ‚ ΠΎΡ‚ΠΌΠ΅Ρ‡Π°Π»ΠΎΡΡŒ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΡ†ΠΈΠ΄Π½ΠΎΠ΅ дСйствиС Π½Π° ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΡ‹. ВоздСйствиС антисСптика Π² ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ΅ ΠΎΡ‚ 30 Π΄ΠΎ 60 с Π½Π΅ ΡΠΎΠΏΡ€ΠΎΠ²ΠΎΠΆΠ΄Π°Π»ΠΎΡΡŒ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹ΠΌ количСствСнным ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΠΎΠΉ популяции. Π’Ρ‚ΠΎΡ€Ρ‹ΠΌ этапом исслСдования стало ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ² ΠΊ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌ концСнтрациям фотосСнсибилизатора. Использовали Π²ΠΎΠ΄Π½Ρ‹ΠΉ раствор этакридина Π»Π°ΠΊΡ‚Π°Ρ‚Π° с концСнтрациями 0,1; 0,05; 0,01%. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ Π²Ρ‹Π²ΠΎΠ΄, Ρ‡Ρ‚ΠΎ раствор этакридина Π»Π°ΠΊΡ‚Π°Ρ‚Π° Π² ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ 0,1% ΠΏΠΎΠ²Ρ‹ΡˆΠ°Π΅Ρ‚ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ² ΠΊ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡŽ низкоинтСнсивного Π»Π°Π·Π΅Ρ€Π½ΠΎΠ³ΠΎ излучСния. Π’ Ρ…ΠΎΠ΄Π΅ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ³ΠΎ экспСримСнта Π±Ρ‹Π»ΠΎ установлСно Π°Π½Ρ‚ΠΈΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΠΎΠ΅ дСйствиС ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ влияния 0,1%-ΠΎΠ³ΠΎ раствора этакридина Π»Π°ΠΊΡ‚Π°Ρ‚Π° ΠΈ Π»Π°Π·Π΅Ρ€Π½ΠΎΠ³ΠΎ излучСния синСго спСктра, Ρ‡Ρ‚ΠΎ проявляСтся сниТСниСм числа ΠšΠžΠ•/ΠΌΠ» совокупной ΠΌΠΈΠΊΡ€ΠΎΡ„Π»ΠΎΡ€Ρ‹ Π·ΡƒΠ±Π½ΠΎΠ³ΠΎ Π½Π°Π»Ρ‘Ρ‚Π°. ΠšΠΎΠ»ΠΈΡ‡Π΅ΡΡ‚Π²ΠΎ ΠšΠžΠ• сниТаСтся со значСния 14,3Β±0,12 Γ— 103/ΠΌΠ» Π΄ΠΎ значСния 2,4Β±0,3 Γ— 102/ΠΌΠ» послС облучСния. Бопоставляя Π΄Π°Π½Π½Ρ‹Π΅ контроля (исходноС число Π²Ρ‹Ρ€ΠΎΡΡˆΠΈΡ… ΠΊΠΎΠ»ΠΎΠ½ΠΈΠΉ) ΠΈ ΠΎΠΏΡ‹Ρ‚Π° (число ΠΊΠΎΠ»ΠΎΠ½ΠΈΠΉ, Π²Ρ‹Ρ€ΠΎΡΡˆΠΈΡ… послС провСдСния Ρ„ΠΎΡ‚ΠΎΠ°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Π΄Π΅Π·ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ), ΠΌΡ‹ установили, Ρ‡Ρ‚ΠΎ Π°Π½Ρ‚ΠΈΠΌΠΈΠΊΡ€ΠΎΠ±Π½ΠΎΠ΅ дСйствиС Ρ„ΠΎΡ‚ΠΎΠ°ΠΊΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Π΄Π΅Π·ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ находится Π² прямой зависимости ΠΎΡ‚ Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ облучСния. Π’Π°ΠΊ, ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ использования фотосСнсибилизатора с ΠΠ˜Π›Π˜ Π² 1,2 Ρ€Π°Π·Π° ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°Π΅Ρ‚ Π°ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ этакридина Π»Π°ΠΊΡ‚Π°Ρ‚Π° (врСмя экспозиции – 60 с) ΠΈ Π² 2,0 Ρ€Π°Π·Π° ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°Π΅Ρ‚ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΌΠΈΠΊΡ€ΠΎΠ±Π½Ρ‹ΠΉ эффСкт Π»Π°Π·Π΅Ρ€Π½ΠΎΠ³ΠΎ излучСния синСго спСктра (врСмя экспозиции – 120 с).Π£ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎΠΌΡƒ дослідТСнні Π²ΠΈΠ²Ρ‡Π°Π»ΠΈ Π²ΠΏΠ»ΠΈΠ² НІЛВ Π½Π° Ρ‚Π»Ρ– фотосСнсибілізатора (Π΅Ρ‚Π°ΠΊΡ€ΠΈΠ΄ΠΈΠ½Ρƒ Π»Π°ΠΊΡ‚Π°Ρ‚Ρƒ) Π½Π° сСлСктивну Π΅Π»Ρ–ΠΌΡ–Π½Π°Ρ†Ρ–ΡŽ ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π½ΠΈΡ… Ρ– ΡƒΠΌΠΎΠ²Π½ΠΎ-ΠΏΠ°Ρ‚ΠΎΠ³Π΅Π½Π½ΠΈΡ… ΠΌΡ–ΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½Ρ–Π·ΠΌΡ–Π². Π’Ρ€Π°Ρ…ΠΎΠ²ΡƒΡŽΡ‡ΠΈ Ρ‚Π΅, Ρ‰ΠΎ Π΅Ρ‚Π°ΠΊΡ€ΠΈΠ΄ΠΈΠ½Ρƒ Π»Π°ΠΊΡ‚Π°Ρ‚Ρƒ ΠΏΡ€ΠΈΡ‚Π°ΠΌΠ°Π½Π½Ρ– властивості антисСптика, слід Π±ΡƒΠ»ΠΎ встановити максимально ΠΌΠΎΠΆΠ»ΠΈΠ²ΠΈΠΉ час Π΄Ρ–Ρ— Π΅Ρ‚Π°ΠΊΡ€ΠΈΠ΄ΠΈΠ½Ρƒ Π»Π°ΠΊΡ‚Π°Ρ‚Ρƒ як фотосСнсибілізатора. ВстановлСно, Ρ‰ΠΎ після Π΄Ρ–Ρ— Ρ€ΠΈΠ²Π°Π½ΠΎΠ»Ρƒ (Π΅Ρ‚Π°ΠΊΡ€ΠΈΠ΄ΠΈΠ½Ρƒ Π»Π°ΠΊΡ‚Π°Ρ‚Ρƒ) протягом 1,5-3-Ρ… Ρ…Π²ΠΈΠ»ΠΈΠ½ відзначалася Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΡ†ΠΈΠ΄Π½Π° дія Π½Π° ΠΌΡ–ΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½Ρ–Π·ΠΌΠΈ. Дія ΠΆ антисСптика Π² ΠΏΡ€ΠΎΠΌΡ–ΠΆΠΊΡƒ Π²Ρ–Π΄ 30 Π΄ΠΎ 60 с Π½Π΅ супроводТувалася Π²ΠΈΡ€Π°ΠΆΠ΅Π½ΠΎΡŽ ΠΊΡ–Π»ΡŒΠΊΡ–ΡΠ½ΠΎΡŽ Π·ΠΌΡ–Π½ΠΎΡŽ ΠΌΡ–ΠΊΡ€ΠΎΠ±Π½ΠΎΡ— популяції. Π”Ρ€ΡƒΠ³ΠΈΠΌ Π΅Ρ‚Π°ΠΏΠΎΠΌ дослідТСння стало визначСння чутливості ΠΌΡ–ΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½Ρ–Π·ΠΌΡ–Π² Π΄ΠΎ Ρ€Ρ–Π·Π½ΠΈΡ… ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†Ρ–ΠΉ фотосСнсибілізатора. Використали Π²ΠΎΠ΄Π½ΠΈΠΉ Ρ€ΠΎΠ·Ρ‡ΠΈΠ½ Π΅Ρ‚Π°ΠΊΡ€ΠΈΠ΄ΠΈΠ½Ρƒ Π»Π°ΠΊΡ‚Π°Ρ‚ Ρƒ концСнтраціях 0,1; 0,05; 0,01%. ΠžΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΈ Π΄ΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ΡŒ Π·Ρ€ΠΎΠ±ΠΈΡ‚ΠΈ висновок, Ρ‰ΠΎ Ρ€ΠΎΠ·Ρ‡ΠΈΠ½ Π΅Ρ‚Π°ΠΊΡ€ΠΈΠ΄ΠΈΠ½Ρƒ Π»Π°ΠΊΡ‚Π°Ρ‚Ρƒ Π² ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†Ρ–Ρ— 0,1% ΠΏΡ–Π΄Π²ΠΈΡ‰ΡƒΡ” Ρ‡ΡƒΡ‚Π»ΠΈΠ²Ρ–ΡΡ‚ΡŒ ΠΌΡ–ΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½Ρ–Π·ΠΌΡ–Π² Π΄ΠΎ Π΄Ρ–Ρ— Π½ΠΈΠ·ΡŒΠΊΠΎΡ–Π½Ρ‚Π΅Π½ΡΠΈΠ²Π½ΠΎΠ³ΠΎ Π»Π°Π·Π΅Ρ€Π½ΠΎΠ³ΠΎ Π²ΠΈΠΏΡ€ΠΎΠΌΡ–Π½ΡŽΠ²Π°Π½Π½Ρ. Π’ Ρ…ΠΎΠ΄Ρ– ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎΠ³ΠΎ СкспСримСнту Π±ΡƒΠ»ΠΎ встановлСно Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½Ρƒ Π΄Ρ–ΡŽ ΠΊΠΎΠΌΠ±Ρ–Π½ΠΎΠ²Π°Π½ΠΎΠ³ΠΎ Π²ΠΏΠ»ΠΈΠ²Ρƒ 0,1%-Π²ΠΎΠ³ΠΎ Ρ€ΠΎΠ·Ρ‡ΠΈΠ½Ρƒ Π΅Ρ‚Π°ΠΊΡ€ΠΈΠ΄ΠΈΠ½Ρƒ Π»Π°ΠΊΡ‚Π°Ρ‚Ρƒ Ρ– Π»Π°Π·Π΅Ρ€Π½ΠΎΠ³ΠΎ Π²ΠΈΠΏΡ€ΠΎΠΌΡ–Π½ΡŽΠ²Π°Π½Π½Ρ синього спСктра, Ρ‰ΠΎ ΠΏΡ€ΠΎΡΠ²Π»ΡΡ”Ρ‚ΡŒΡΡ зниТСнням числа КУО/ΠΌΠ» сукупної ΠΌΡ–ΠΊΡ€ΠΎΡ„Π»ΠΎΡ€ΠΈ Π·ΡƒΠ±Π½ΠΎΠ³ΠΎ Π½Π°Π»ΡŒΠΎΡ‚Ρƒ. ΠšΡ–Π»ΡŒΠΊΡ–ΡΡ‚ΡŒ КУО Π·Π½ΠΈΠΆΡƒΡ”Ρ‚ΡŒΡΡ Π·Ρ– значСння 14,3Β±0,12 Γ— 103/ΠΌΠ» Π΄ΠΎ значСння 2,4Β±0,3 Γ— 102/ΠΌΠ» після опромінСння. Π—Ρ–ΡΡ‚Π°Π²Π»ΡΡŽΡ‡ΠΈ Π΄Π°Π½Ρ– ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŽ (ΠΏΠΎΡ‡Π°Ρ‚ΠΊΠΎΠ²Π΅ число ΠΊΠΎΠ»ΠΎΠ½Ρ–ΠΉ, Ρ‰ΠΎ виросли) Ρ– досліду (число ΠΊΠΎΠ»ΠΎΠ½Ρ–ΠΉ, Ρ‰ΠΎ виросли після провСдСння Ρ„ΠΎΡ‚ΠΎΠ°ΠΊΡ‚ΠΈΠ²ΠΎΠ²Π°Π½ΠΎΡ— Π΄Π΅Π·Ρ–Π½Ρ„Π΅ΠΊΡ†Ρ–Ρ—), ΠΌΠΈ встановили, Ρ‰ΠΎ Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½Π° дія Ρ„ΠΎΡ‚ΠΎΠ°ΠΊΡ‚ΠΈΠ²ΠΎΠ²Π°Π½ΠΎΡ— Π΄Π΅Π·Ρ–Π½Ρ„Π΅ΠΊΡ†Ρ–Ρ— Π·Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒΡΡ Π² прямій залСТності Π²Ρ–Π΄ тривалості опромінСння. Π’Π°ΠΊ, Π΅Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ ΠΊΠΎΠΌΠ±Ρ–Π½ΠΎΠ²Π°Π½ΠΎΠ³ΠΎ використання фотосСнсибілізатора Π· НІЛВ Π² 1,2 Ρ€Π°Π·ΠΈ ΠΏΠ΅Ρ€Π΅Π²ΠΈΡ‰ΡƒΡ” Π°ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ Π΅Ρ‚Π°ΠΊΡ€ΠΈΠ΄ΠΈΠ½Ρƒ Π»Π°ΠΊΡ‚Π°Ρ‚Ρƒ (час Скспозиції – 60 с) Ρ– Π² 2,0 Ρ€Π°Π·ΠΈ ΠΏΠ΅Ρ€Π΅Π²ΠΈΡ‰ΡƒΡ” Π°Π½Ρ‚ΠΈΠΌΡ–ΠΊΡ€ΠΎΠ±Π½ΠΈΠΉ Π΅Ρ„Π΅ΠΊΡ‚ Π»Π°Π·Π΅Ρ€Π½ΠΎΠ³ΠΎ Π²ΠΈΠΏΡ€ΠΎΠΌΡ–Π½ΡŽΠ²Π°Π½Π½Ρ синього спСктра (час Скспозиції – 120 с)

    Analysis of fundamental parameters for V477 Lyr

    Get PDF
    We analyze the photometric and spectroscopic observations of the young pre-cataclysmic variable (pre-CV) V477 Lyr. The masses of both binary components have been corrected by analyzing their radial velocity curves. We show that agreement between the theoretical and observed light curves of the object is possible for several sets of its physical parameters corresponding to the chosen temperature of the primary component. The final parameters of V477 Lyr have been established by comparing observational data with evolutionary tracks for planetary nebula nuclei. The derived effective temperature of the O subdwarf is higher than that estimated by analyzing the object's ultraviolet spectra by more than 10000 K. This is in agreement with the analogous results obtained previously for the young pre-CVs V664 Cas and UU Sge. The secondary component of V477 Lyr has been proven to have a more than 25-fold luminosity excess compared to main-sequence stars of similar mass. Comparison of the physical parameters for the cool stars in young pre-CVs indicates that their luminosities do not correlate with the masses of the objects. The observed luminosity excesses in such stars show a close correlation with the post-common-envelope lifetime of the systems and should be investigated within the framework of the theory of their relaxation to the state of main-sequence stars. Β© 2008 Pleiades Publishing, Ltd

    Spectral types of four binaries based on photometric observations

    Get PDF
    We present results of photometric and spectroscopic observations of four close binaries with subdwarf B components: PG 0918+029, PG 1000+408, PG 1116+301, PG 0001+275. We discovered that PG 1000+408 is a close binary, with the most probable orbital period being Porb = 1.041145 day. Based on a comparison of the observed light curves at selected orbital phases and theoretical predictions for their variations, all the systems are classified as doubly degenerate binaries with low-luminosity white-dwarf secondaries. Β© 2008 Pleiades Publishing, Ltd

    PG 1316+678: A young pre-cataclysmic binary with weak reflection effects

    Get PDF
    The PG 1316+678 star is classified as a pre-cataclysmic binary, as is evidenced by its photometric and spectroscopic observations. Its orbital period is determined to be Porb = 3. 3803d, which coincides with the photometric period. The intensities of the emission HI and HeI lines are shown to vary synchronously with the brightness of the object (Ξ”mV = 0. 065m, Ξ”mR = 0. 08m). These variations arise as the UV radiation from the DAO white dwarf is reflected from the surface of the cold companion. The parameters of the binary are estimated and the time of its evolution after the common-envelope phase is determined to be t β‰ˆ 240 000 years. Thus, PG 1316+678 is a young pre-cataclysmic NN Ser variable with the smallest known photometric reflection effect. Β© 2013 Pleiades Publishing, Ltd

    Steps Toward Determination of the Size and Structure of the Broad-Line Region in Active Galactic Nuclei. XVI. A Thirteen-Year Study of Spectral Variability in NGC 5548

    Get PDF
    We present the final installment of an intensive 13-year study of variations of the optical continuum and broad H-beta emission line in the Seyfert 1 galaxy NGC 5548. The data base consists of 1530 optical continuum measurements and 1248 H-beta measurements. The H-beta variations follow the continuum variations closely, with a typical time delay of about 20 days. However, a year-by-year analysis shows that the magnitude of emission-line time delay is correlated with the mean continuum flux. We argue that the data are consistent with the simple model prediction that the size of the broad-line region is proportional to the square root of the ionizing luminosity. Moreover, the apparently linear nature of the correlation between the H-beta response time and the nonstellar optical continuum arises as a consequence of the changing shape of the continuum as it varies, specifically with the optical (5100 A) continuum luminosity proportional to the ultraviolet (1350 A) continuum luminosity to the 0.56 power.Comment: 20 pages plus 4 figures. Accepted for publication in The Astrophysical Journa
    • …
    corecore