282 research outputs found

    Using Unlabeled Data for Increasing Low-Shot Classification Accuracy of Relevant and Open-Set Irrelevant Images

    Get PDF
    In search exploration and reconnaissance tasks performed with autonomous ground vehicles an image classification capability is needed for specifically identifying targeted objects relevant classes and at the same time recognize when a candidate image does not belong to anyone of the relevant classes irrelevant images In this paper we present an open-set low-shot classifier that uses during its training a modest number less than 40 of labeled images for each relevant class and unlabeled irrelevant images that are randomly selected at each epoch of the training process The new classifier is capable of identifying images from the relevant classes determining when a candidate image is irrelevant and it can further recognize categories of irrelevant images that were not included in the training unseen The proposed low-shot classifier can be attached as a top layer to any pre-trained feature extractor when constructing a Convolutional Neural Networ

    Romanian Tritium for Nuclear Fusion

    Get PDF
    The demand for tritium is expected to increase when ITER (the International Thermonuclear Experimental Reactor) begins operation in the mid-2020s. Romania is expected to detritiate its CANDU (Canada Deuterium Uranium) units at Cernavoda starting 2024, with the goal of improving radiological safety and reactor performance. Detritiation will result in a significant quantity of tritium being produced and thus Romania has an opportunity to supply tritium for fusion. In this assessment, ITER has been used as a reference device requiring tritium, as the projected tritium extraction schedule from Cernavoda aligns favourably with ITER operation. The findings suggest that Romania is capable of providing a total of 6.2 kg of tritium to ITER over its 20 year operation, generating a potential revenue of 186M(USD).OpportunitiesassociatedwiththesupplyofRomanianhelium3arealsoconsideredasahedgingoption,whichhasthepotentialtogenerate186 M (USD). Opportunities associated with the supply of Romanian helium-3 are also considered as a hedging option, which has the potential to generate 120 M (USD) in the case of zero tritium sales. Greater involvement in future fission-fusion tritium-related activities through experience in tritium technologies is also discussed as a unique opportunity for Romania

    A Genomic Pathway Approach to a Complex Disease: Axon Guidance and Parkinson Disease

    Get PDF
    While major inroads have been made in identifying the genetic causes of rare Mendelian disorders, little progress has been made in the discovery of common gene variations that predispose to complex diseases. The single gene variants that have been shown to associate reproducibly with complex diseases typically have small effect sizes or attributable risks. However, the joint actions of common gene variants within pathways may play a major role in predisposing to complex diseases (the paradigm of complex genetics). The goal of this study was to determine whether polymorphism in a candidate pathway (axon guidance) predisposed to a complex disease (Parkinson disease [PD]). We mined a whole-genome association dataset and identified single nucleotide polymorphisms (SNPs) that were within axon-guidance pathway genes. We then constructed models of axon-guidance pathway SNPs that predicted three outcomes: PD susceptibility (odds ratio = 90.8, p = 4.64 × 10−38), survival free of PD (hazards ratio = 19.0, p = 5.43 × 10−48), and PD age at onset (R2 = 0.68, p = 1.68 × 10−51). By contrast, models constructed from thousands of random selections of genomic SNPs predicted the three PD outcomes poorly. Mining of a second whole-genome association dataset and mining of an expression profiling dataset also supported a role for many axon-guidance pathway genes in PD. These findings could have important implications regarding the pathogenesis of PD. This genomic pathway approach may also offer insights into other complex diseases such as Alzheimer disease, diabetes mellitus, nicotine and alcohol dependence, and several cancers

    Rare deleterious germline variants and risk of lung cancer

    Get PDF
    Recent studies suggest that rare variants exhibit stronger effect sizes and might play a crucial role in the etiology of lung cancers (LC). Whole exome plus targeted sequencing of germline DNA was performed on 1045 LC cases and 885 controls in the discovery set. To unveil the inherited causal variants, we focused on rare and predicted deleterious variants and small indels enriched in cases or controls. Promising candidates were further validated in a series of 26,803 LCs and 555,107 controls. During discovery, we identified 25 rare deleterious variants associated with LC susceptibility, including 13 reported in ClinVar. Of the five validated candidates, we discovered two pathogenic variants in known LC susceptibility loci, ATM p.V2716A (Odds Ratio [OR] 19.55, 95%CI 5.04–75.6) and MPZL2 p.I24M frameshift deletion (OR 3.88, 95%CI 1.71–8.8); and three in novel LC susceptibility genes, POMC c.*28delT at 3′ UTR (OR 4.33, 95%CI 2.03–9.24), STAU2 p.N364M frameshift deletion (OR 4.48, 95%CI 1.73–11.55), and MLNR p.Q334V frameshift deletion (OR 2.69, 95%CI 1.33–5.43). The potential cancer-promoting role of selected candidate genes and variants was further supported by endogenous DNA damage assays. Our analyses led to the identification of new rare deleterious variants with LC susceptibility. However, in-depth mechanistic studies are still needed to evaluate the pathogenic effects of these specific alleles

    OptiJ: Open-source optical projection tomography of large organ samples

    Get PDF
    The three-dimensional imaging of mesoscopic samples with Optical Projection Tomography (OPT) has become a powerful tool for biomedical phenotyping studies. OPT uses visible light to visualize the 3D morphology of large transparent samples. To enable a wider application of OPT, we present OptiJ, a low-cost, fully open-source OPT system capable of imaging large transparent specimens up to 13 mm tall and 8 mm deep with 50 µm resolution. OptiJ is based on off-the-shelf, easy-to-assemble optical components and an ImageJ plugin library for OPT data reconstruction. The software includes novel correction routines for uneven illumination and sample jitter in addition to CPU/GPU accelerated reconstruction for large datasets. We demonstrate the use of OptiJ to image and reconstruct cleared lung lobes from adult mice. We provide a detailed set of instructions to set up and use the OptiJ framework. Our hardware and software design are modular and easy to implement, allowing for further open microscopy developments for imaging large organ samples

    Transcriptome-wide Mendelian randomization study prioritising novel tissue-dependent genes for glioma susceptibility.

    Get PDF
    Genome-wide association studies (GWAS) have discovered 27 loci associated with glioma risk. Whether these loci are causally implicated in glioma risk, and how risk differs across tissues, has yet to be systematically explored. We integrated multi-tissue expression quantitative trait loci (eQTLs) and glioma GWAS data using a combined Mendelian randomisation (MR) and colocalisation approach. We investigated how genetically predicted gene expression affects risk across tissue type (brain, estimated effective n = 1194 and whole blood, n = 31,684) and glioma subtype (all glioma (7400 cases, 8257 controls) glioblastoma (GBM, 3112 cases) and non-GBM gliomas (2411 cases)). We also leveraged tissue-specific eQTLs collected from 13 brain tissues (n = 114 to 209). The MR and colocalisation results suggested that genetically predicted increased gene expression of 12 genes were associated with glioma, GBM and/or non-GBM risk, three of which are novel glioma susceptibility genes (RETREG2/FAM134A, FAM178B and MVB12B/FAM125B). The effect of gene expression appears to be relatively consistent across glioma subtype diagnoses. Examining how risk differed across 13 brain tissues highlighted five candidate tissues (cerebellum, cortex, and the putamen, nucleus accumbens and caudate basal ganglia) and four previously implicated genes (JAK1, STMN3, PICK1 and EGFR). These analyses identified robust causal evidence for 12 genes and glioma risk, three of which are novel. The correlation of MR estimates in brain and blood are consistently low which suggested that tissue specificity needs to be carefully considered for glioma. Our results have implicated genes yet to be associated with glioma susceptibility and provided insight into putatively causal pathways for glioma risk
    corecore