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vehicles, an image classification capability is needed for specifically identifying targeted objects 
(relevant classes) and at the same time recognize when a candidate image does not belong to 
anyone of the relevant classes (irrelevant images). In this paper, we present an open-set low-shot 
classifier that uses, during its training, a modest number (less than 40) of labeled images for 
each relevant class, and unlabeled irrelevant images that are randomly selected at each epoch 
of the training process. The new classifier is capable of identifying images from the relevant 
classes, determining when a candidate image is irrelevant, and it can further recognize 
categories of irrelevant images that were not included in the training (unseen). The proposed low-
shot classifier can be attached as a top layer to any pre-trained feature extractor when 
constructing a Convolutional Neural Network. 
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Using Unlabeled Data for Increasing Low-Shot 
Classification Accuracy of Relevant and Open-

Set Irrelevant Images
Spiridon Kasapis α, Geng Zhang σ, Nickolas Vlahopoulos ρ & Jonathon M. Smereka Ѡ

Abstract- In search, exploration, and reconnaissance tasks 
performed with autonomous ground vehicles, an image 
classification capability is needed for specifically identifying 
targeted objects (relevant classes) and at the same time 
recognize when a candidate image does not belong to anyone 
of the relevant classes (irrelevant images). In this paper, we 
present an open-set low-shot classifier that uses, during its 
training, a modest number (less than 40) of labeled images for 
each relevant class, and unlabeled irrelevant images that are 
randomly selected at each epoch of the training process. The 
new classifier is capable of identifying images from the 
relevant classes, determining when a candidate image is 
irrelevant, and it can further recognize categories of irrelevant 
images that were not included in the training (unseen). The 
proposed low-shot classifier can be attached as a top layer to 
any pre-trained feature extractor when constructing a 
Convolutional Neural Network.

semi-supervised learning, open-set
classification, neural networks, receiver operating 
characteristic.

I. Introduction

xtensive research in the field of machine learning 
has been progressively improving the 
performance of object recognition algorithms 

which achieve impressive results on a variety of multi-
class classification tasks [15, 17, 24]. Especially in
search, exploration, and reconnaissance applications 
where object recognition methods have been 
concentrated on a closed-set setting where all testing 
samples belong to one of the classes that the classifier 
has been trained on [29]. The limited finite number of 
classes which are the target of inspection need to be 
detected out of the infinite object classes that are 
encountered in unconstrained environment.

To tackle this challenge, efforts have been 
made to endow Convolutional Neural Networks (CNNs) 
the innate human brain capability to identify objects they 
are trained on while deliberately discarding objects of no 
interest. Lately, the introduction of open-set 
classification [20, 31, 30] has introduced  an ability to

Author α ρ: University of Michigan. e-mails: skasapis@umich.edu, 
nickvl@umich.edu
Author σ: Michigan Engineering Services, e-mail: gengz@miengsrv.com
Author Ѡ: US Army DEVCOM GVSC.
e-mail: jonathon.m.smereka.civ@army.mil

correctly identify images as unknown test objects that 
do not belong to any known classes, as opposed to 
falsely classifying them in one of the known classes (i.e.,
classes that the model has been trained on). More 
specifically, [28, 10] defines open-set classification as 
the problem of balancing the known space 
(specialization) and unknown open space 
(generalization) of the model. Examples such as out-of 
distribution detection [18] and realistic classification [26] 
show the interest in the concept of open-set recognition
[4] while showing that CNNs can be trained to reject 
examples that have not been seen during training or are 
too hard to classify.

Recently, works on video object discovery [33] 
go against the closed-set assumption that each image 
during inference belongs to one of the fixed number of 
relevant classes. In [33] the terminology of relevant and 
irrelevant is introduced and is used in this paper since it 
aligns with the definitions stated in the Abstract. In most 
real-life applications this closedset assumption is 
uncommon and ideal, therefore recently proposed 
methods [4] are subject to an open-set condition where 
images not seen during training should be classified into 
irrelevant or unseen classes. Consequentially, in this
work we introduce the splitting of testing samples in 
three categories: (a) relevant; labeled samples used 
during train-

Figure 1: Schematic of the two parts of our network. We
feed to the Pretrained Network labeled "Relevant" 
images and unlabeled "Irrelevant" images. For each 
image our proposed classifier produces class score 
vectors that get classified using a threshold criterion and 
Receiver Operating Characteristic (ROC), with accuracy 
much greater than already existing techniques, 
especially for the irrelevant dataset.

E
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ing, (b) irrelevant; unlabeled samples used during 
training and (c) irrelevant but also unseen; for categories 
of images that are not seen during training and should 
be identified as irrelevant. 

Another challenge the visual recognition 
community faces is the absence of labeled examples. 
Especially in military applications having large labeled 
datasets is an unreal expectation as needs and mission 
tools used for search and reconnaissance evolve. An 
open-set recognizer will face limitations such as the 
absence of large amounts of training samples, thus an 
open-set recognition technique that simultaneously 
supports the few-shot setting is needed. Therefore, in 
this paper we propose a low-shot solution to the 
problem of open-set recognition which considers 
exclusively the classification layer of a CNN. 

Specifically, we present an approach on 
significantly improving the performance of a simple, time 
efficient, one-layer classifier on recognising labeled 
(relevant) images along with non-labeled (irrelevant and 
unseen as mentioned above) images (Figure 1). The 
ability to specifically recognize a number (of the order of 
50) of relevant classes and also identify when an image 
does not belong to any of them in a labelinexpensive 
way is one of the main motivations for low-shot open-set 
recognition. 

Efforts with similar goals have been 
concentrated on the training of the entire CNN. For 
example, the PEELER algorithm [25] combines the 
random selection of a set of novel classes per episode, 
a loss that maximizes the posterior entropy for examples 
of those classes, and a new metric learning formulation 
in order to train the weights of a CNN in such a manner 
that it can recognize images of a limited amount of 
classes ( 20) that are unseen during training. Dhamija 
et al. [7] proposes the introduction of two loss functions 
that are designed to maximize entropy for unknown 
inputs while increasing separation in deep feature space 
by modifying magnitudes of known and unknown 
samples. Although the work of Dhamija et al. introduces 
the concept of unknown sample recognition like we do, 
the number of recognizable classes is still very limited 
compared to the testing done in our method. 

Both of the aforementioned algorithms train the 
entirety of the CNN, unlike the methods proposed by 
Kozerawski and Turk [23] which can augment any few 
shot learning method without requiring retraining in 
order to work in a few-shot multiclass open-set setting. 
Although not concerned with one-class classification, a 
similar approach is followed in our work too, where we 
utilize a pre-trained feature extractor (such as the ones 
publicly available by PyTorch1

                                                             
  

) and propose an 
independent open-set low-shot classification method 
which  can  augment   any    existing   feature   extractor. 

To explore the open-set low-shot problem in a 
holistic, non-specific and easily applicable way, we 
concentrate only on the training of the classification 
matrix (matrix used to turn the feature vector to a 
probability vector in Figure 1), using the pre-trained 
ResNet feature extractors [15] discussed in Section 2. 
We reduce the image matrices to feature vectors [8, 1] 
which are then used in Section 4 to train the classifier 
with the help of the analytic derivative of our loss 
function and a unique, partially labeled, target matrix. In 
Section 5, we use the classification variability statistics 
and a Receiver Operating Characteristic (ROC) curve as 
a method to calculate threshold scores for each relevant 
class. An approach that uses random selections of 
unlabeled irrelevant images during each epoch of the 
classifier training is introduced. Testing datasets are 
used in Section 3 for determining the ability to effectively 
classify all Relevant, Irrelevant and Unseen datasets. In 
the last Section we make some closing remarks on our 
work presented in this paper. 

In summary, the contributions of this work are 
the following: 

• We present a novel open-set low-shot (OSLS) 
classification method which can be added as the 
top layer to any pre-trained feature extractor in order 
to create a CNN that can classify images in relevant 
classes and also determine if an image does not 
belong to any of the relevant classes. 

• The OSLS Classifier yields improved classification 
performance compared to classifiers that either do 
not use unlabaled images during training or assume 
all unlabeled samples to belong in the same class. 

• The number of image classes the OSLS is able to 
classify is greater than the ones used in the open-
set classification literature [10, 7, 25]. 

II. Feature Extractor 

Deep Residual Networks have been proven to 
be a very effective in mapping images to a meaningful 
feature space, especially when trained from large 
datasets [32]. In this work we use ResNet18 and 
ResNet34 [16] to map the sample images to the vector 
space. Both architectures produce 512-long feature 
vectors which compared to deeper network feature 
products lead to a shorter algorithm running time. The 
different types of ResNets we used, although not very 
different, will be discussed in Section 3. The weights 
were trained using the ImageNet1k dataset [6] which 
involves a large-scale ontology of images. The 
development of the feature extractor itself is out of the 
scope of this paper and pre trained feature extractors 
available by PyTorch are used. 

Before providing the training images feature 
vectors to the OSLS classifier we normalize them using 
the following equation: 

 

≤
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1 https://pytorch.org/vision/stable/models.html



     (1) 

Where  is a 512-long vector feature map and 
 are its respective maximum and minimum 

values in vector form. This type of basic normalization 
constrains the  values from 0 to 1. We apply the 
normalization to prevent the Exponential Loss and its 
Derivative in Equation 9 and Equation 11, respectively, 
from gaining extremely high values. Additionally, we 
demonstrate in Section 6 that this type of normalization 
significantly increases our method’s classification 

accuracy compared to the more popular softmax 

normalization. It can be argued that the use of softmax 
normalization yields poor solutions for open-set 
recognition as it tends to overfit on the training classes. 

III. Datasets 

The proposed OSLS classification method is 
used on a variety of training and testing examples, each 
using different sample arrangements. To explore the 
capabilities of the proposed method in different settings, 
two different datasets are being used: the Caltech256 
[11] and a custom Mixed dataset. 

To explain with more clarity our method and 
results, we describe the way the Caltech256 dataset is 
split in two groups. Caltech256 is an open source 
dataset, it consists of 256 different image classes and 
has been recently used a lot as a benchmark for a 
variety of machine learning applications [2, 9]. 

Similar to our selection of ResNets, we use an 
open source and broadly used dataset in order to make 
our example and results as general and less task 
specific as possible. As we intend to produce work that 
is going to be used in the future for specific 
applications, to give a hint on how the method can be 
geared towards recognition in unique environments the 
eight infrared classes (Figure 3) which are available from 
the Military Sensing Information Analysis Center 
(SENSIAC) Automatic Target Recognition (ATR) 
database [34] are used in a number of our tests. 

 

Figure 2: In blue we see the 50 Relevant image classes, 
and in red the Irrelevant. For training, every class, both 
labeled and unlabeled contains 40 images, so 2000 
labeled and 2000 unlabeled. The evaluation is 
performed using 10 images for each class, different than 
the ones used during training. 

We train our classifier on both labeled and 
unlabeled pictures, therefore our main dataset consists 
of what we call Relevant and Irrelevant pictures. The 
relevant group is consisted of the first 50 classes of 
Caltech256 and the irrelevant group contains images 
from the next 50 classes as shown in Figure 2. To 
explore the dependency between our classifier visual 
recognition accuracy and the amount of unlabeled 
images, we created two more versions of the 
Caltech256 dataset with an expanded number of 
Irrelevant images, one has 100 classes of unlabeled 
images (+50 Irrelevant) and the other has 200 classes 
of unlabeled images (+150 Irrelevant), both with the 
same number of pictures per class, 40. 

 

 
Figure 3:

 

The manually created infrared (IR) dataset 
using

 

video snapshots from the ATR database consists 
of eight

 

classes, seven of them are civilian and combat 
vehicles and

 

the last one is a human class.

 
Finally, in order to explore the behavior of our 

method on

 

unique and very different environments from 
the ones present

 

in the Caltech256 dataset, we created 
our own infrared (IR)

 

combat vehicle image group by 
taking snapshots from the

 

publicly available IR videos 
provided in the Military Sensing

 

Information Analysis 
Center (SENSIAC) ATR database

 

(examples displayed 
in Figure 3). The new data product is

 

composed of the 
same amount of pictures with the one in Figure

 

2, with 
the exception that the first 8 relevant image classes

 

are 
infrared instead of Caltech 256 pictures. Although only
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 Figure 4: Example images from each one of the 100 classes that comprise the mixed dataset. The 50 relevant 
images include a variety of different vehicles, humans and weapons while the 50 irrelevant include buildings and 
outdoor scenery. 

 
 

 
 

 
The second dataset we train and test our 

classification method on is the Mixed dataset. The 
relevant group is composed of 50 select classes from 
the ImageNet [6] dataset and includes pictures of 
vehicles, aircraft, humans and weapons. This group will 
serve as the target images that are expected to be 
recognised. On the other hand, the irrelevant group is 
composed of 50 classes from the MIT Places [35] 
dataset which includes a variety of outdoor scenery 
pictures such as buildings and natural environment. The 
choice of these two datasets is deliberate as in our 
application we are trying to recognize objects in a scene 
and push away scenes that have no relevant objects. 
Each class on the relevant part of the mixed dataset is 
comprised of 1,300 images, while each irrelevant class 
has available 13,000 pictures on average. The 
imbalance between relevant and irrelevant images is 
representative of the imbalance in the unlabeled data 
captured in the field which will contain many more 
irrelevant objects compared to targeted classes. From 
every class in both groups, 10 images are reserved for 
testing the accuracy of the various methods which are 
compared after the training of the classifier has been 
completed. When using the Mixed dataset in this work, a 
part of the irrelevant pictures will be reserved and used 
as unseen samples (Figure 9), images that have not 
been seen during training but have to be recognized by 
the classifier in the same way as the irrelevant. 

Examples of the mixed dataset images are 
presented on Figure 4 while a complete list of the 
classes in alphabetical order is presented in the 
Appendix. The way the mixed dataset is utilised for 
training and testing the low-shot classifier is discussed 
in Section 5. 

IV. Low-Shot Classifier Training 
The two integral parts of our classifier training 

process are the target matrix and the loss function. Our 
training goal is to tweak the initially randomized weight 
matrix in such a manner that when multiplying it with a 
testing feature map, it produces a score matrix whose 
largest value is the desired class element. 

In machine learning, a fully connected layer 
performs the following calculation: 

(2) 

Where W is weighting matrix of the classifier, F 
is the feature map matrix, V is the bias vector and f is the 
activation function. A Singular Value Decomposition 
(SVD) method solves our matrix equations [21, 19]. The 
pseudo-inverse method calculation results as: 

(3) 

Here, is the feature maps,, is the weight matrix 
which we desire to train, and ˆH is the target, the ideal 
outcome for the score matrix. Our MATLAB 
implementation handles the training one class at the 
time, therefore is a  matrix and , is a 

long vector for each class, where is the 
number of training images in every epoch and 
= 512 is the length of the feature vectors (constant). 
With no use of the bias vector, and the reversed order of 

and , to account for the row-column switch, in SVD we 
calculate the , matrix one vector (class) at a time 
therefore essentially solving for the least square solution 
of:  

(4) 

When the exact solution does not exist, which 
means that  is not a full-rank square matrix, we get 
approximate solutions as: 

(5) 

Ĥ = f(,� + V)

Ĥ = f,�

�

� #8<6 × # 5 40C ,

# 5 40C #8<6
# 5 40C

�

,

�G = 1

�G = 1̂

�
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8 infrared classes are available in the ATR dataset, the 
term Infrared Dataset is used to indicate that 8 infrared 
classes are included within the 50 relevant classes. On 
the next chapter we discuss how the dataset images 
described above are treated during the classifier training 
process.



 Therefore the approximation error is:
 

 
(6)

 and in a least-square approach the loss function is:
 

(7)  

 
substituting Equation 6 results: 

                                                                                       
(8)

 
 
 

We introduce an exponential version of the least 
square

 
solution in order to explore a new, faster 

converging loss
 

function based on [22]. Our new 
squared-exponential loss

 
function is:

 

                                                                                      (9)
 

 
 
therefore the gradient can be proven analytically to be: 

                                                                                     
(10)

 

 
 
and the gradient vector is: 

                                                                                     
(11)

 

There are two main reasons for choosing this 
loss function.

 

A squared-exponential function is easy to 
differentiate

 

analytically and the differentiation is applied 
to the linear

 

algebra form implemented in the MATLAB 
code. Note that

 

the dot operator in Equation 11, i.e., . , 
used with multiplication

 

in MATLAB, creates element 
wise operations.

 

Compared to other differentiable 
functions we tested, the

 

square-exponential was the one 
to converge faster and in a

 

steady way. A problem we 
encountered, which we solved

 

by normalizing the 
feature maps as described in Equation

 

1, is that 
because of the nature of the function, for numbers

 

greater than 1, the Loss would result in extremely high

 

values.

 

The gradient matrix in Equation 11 is then 
multiplied

 

by a learning rate( ) and added to the weight 
matrix ( ,  ),

 

repeating this sequence for every epoch. The 
steps taken

 

towards training the classifier matrix are 
therefore all independent

 

from machine learning libraries 
or functions. Although

 

many different loss functions that 
get differentiated

 

in a semi-analytic fashion are being 
used by machine learning

 

libraries, we concentrated our

 

efforts on not using any

 

existing libraries to create a 
stand-alone method. Therefore

 

the squared-exponential 
loss function is a good fit.

 

As in most machine learning applications, the 
update

 

mechanism used towards convergence is some 

variation of

 

a normal gradient descent equation. In our 
specific case we

 

use:

 

                                                                                   

 

(12)

 

Here, in every epoch , , gets updated by 
subtracting

 

from it the product of the learning rate [ and 
the

 

gradient matrix.

 

We obtain our learning rate using an 
algorithm inspired

 

by Iterative Shrinkage-Thresholding 
Algorithm (ISTA) [3].

 

We begin with calculating a 
pseudo-loss which is going to

 

be compared with the 
actual loss to determine whether the

 

learning

 

rate needs 
to be decreased or kept as specified on

 

the previous 
epoch. This iterative method progressively decreases

 

the learning rate as we approach closer to the desired

 

optimal point.

 

The last, and most unique part about our 
classification

 

mAs in most machine learning 
applications, the update

 

mechanism used towards 
convergence is some variation of

 

a normal gradient 
descent equation. In our specific case we

 

use:

 

ethod is our target. As mentioned in the Section 1, the

 

uniqueness of our approach relies on the fact that we 
make

 

use of unlabeled images during the training of the 
weight

 

matrix. This is done by extending a typical one-
hot encoding

 

[14] matrix to also include class score 
distributions as targets

 

for the Irrelevant images. 
Labeled images have arrays of

 

zeros and a unit value on 
the correct class element as targets.
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8=1
(
<∑
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0 0 1
−0.2 −0.2 −0.2
−0.2 −0.2 −0.2
−0.2 −0.2 −0.2
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1
2
[
m!

mG

Irrelevant pictures belong to none of the classes 
therefore the score for each class should be zero. By 
experimentation we concluded that the irrelevant target 
that works best should be a slight negative value, such 
as -0.2. This intuition matches some of the binary 
classification work that has been done on Support
Vector Machines’ (SVM) correlation filters, where 0 and 1 
were not as separable as a negative value (-0.1, -1) and 
1 [36, 5]. As an example, if a training dataset was
consisted of six pictures, half of them labeled and half of
them unlabeled, and the labeled ones were members of 
three different classes, our target matrix would look as 
follows:

    

We train the weight matrix in such a way that 
during evaluation the irrelevant images class score 
vector values are spread equally between the classes 
and acquire values as close to zero as possible. This 
helps the Irrelevant pictures to score less than the 
respective class threshold.
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Along with using this target oriented training 
procedure, we also increase our recognition accuracy 
by calculating our threshold scores using the ROC 
method as explained in Section 5.

V. Low-Shot Classifier and Roc 
Threshold Calculation

The multiplication between a feature vector and 
a weight matrix yields a class score vector. Neural 
Network classification theory uses the highest score 
(Top 1, Top 3 or Top 5 have been used too) to group the 
images into classes. We extend this criterion to make it 
applicable when unlabeled images are present by 
introducing a Threshold Score ( value for each class.

The value serves as a binary discriminating 
test in order to group pictures in the Relevant and 
Irrelevant bins. As mentioned above, we don’t only need 
to divide pictures in the two groups, we also want the 
relevant group pictures to be normally classified in their 
respective class.

It is important to note that the is calculated 
during the training of the OSLS. We need the to be 
pre-calculated before we start evaluating our testing 
dataset. Once the training has been completed and the 

is known, the classification process runs as follows: a) 
The testing image runs through the classifier and 
scores, which denote the likelihood of the image 
belonging to each class, are calculated. b) The image is 
assigned to the class with highest score. c) The score of
the assigned image is compared to the of the class 
where it was assigned. If it is higher then it is considered 
as a member of the class. If lower, it is determined to be 
an irrelevant image.

Figure 5: In blue and red we see the 50 different class 
score values of the 10 different Chess Board and 
Grapes images respectively. In Green is the ROC 
threshold calculated for each one of the 50 classes.

Within Figure 5 we present an example where 
class score values for ten testing images from two 
classes are plotted. During the training of the classifier 
matrix we treated the Chess Board pictures as labeled 
(Relevant), with label 45 attributed to them, and the 
Grapes pictures as unlabeled (Irrelevant). On the graph 
we can see that during testing, most of the Chess Board 

pictures have high class score values on the correct 
class (45). The correct scores are also above the of 
this class, therefore they will be classified correctly as 
members of the chess board class.

On the other hand, the Grapes pictures are 
treated as Irrelevant during training resulting in lower 
score values compared to the (green line) of all 
relevant values. Our target matrix along with our 
classification method achieves to push the Irrelevant 
score values lower than the Relevant (red lines below 
the green line), while keeping the score values for the
relevant class above the corresponding (blue lines 
above green in class 45). Intuitively, we can set the to 
be the lowest relevant value encountered during the 
training (Normal Threshold). If a picture is not classified 
higher than the worst correctly classified training picture, 
then it should be Irrelevant. As seen in Figure 6, 
although this discriminatory rule will give us the best 
possible Relevant accuracy, it will strongly discriminate 
against Irrelevant pictures.

Figure 6: In blue we see the normal distribution of 
Relevant scores within class X, while in red we see the 
distribution of the Irrelevant pictures that got classified 
as class X. Using a normal threshold would classify all 
Relevant pictures as True Positive, but would hurt the 
True Negative and total accuracy by a value represented 
by the green area.

To maximize the combined accuracy we use the 
ROC curve [27, 13, 12] to chose our threshold values. 
The same Way we would do with a Normal Threshold, 
the ROC Threshold is going to be calculated right after 
training and before testing, using explicitly the training 
data.

To demonstrate the need of using the ROC 
we graph the ROC curves of five, unique compared to 
each other, classes of pictures that we trained our 
classifier on. All five classes were part of the labeled 
dataset (relevant classes). We can see in Figure 7 that 
every different class of pictures has a 6 different 
response to the ROC implementation. The different
Areas Under the Curves (AUC) represent how well our 
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ROC method is able to classify the data, but also 
underlines the need of such an implementation.

Figure 7: True Relevant Rate is the amount of relevant 
pictures that our classifier recognized them as such, 
over the total number of correctly classified pictures. 
False Relevant is the ratio of pictures that were irrelevant 
but were predicted as relevant, over the total number of 
incorrectly classified pictures.

In our analysis we focus on the classification of 
Relevant pictures, which we assume to be the Positive 
statistical case, therefore we use the terms True 
Relevant Rate (TRR) and False Relevant Rate (FRR). 
TRR and FRR are no different than the True Positive 
Rate (or Sensitivity) and False Positive Rate (or Fall-Out) 
respectively, used in statistical analysis.
Therefore we define:

(14))'' =
)%

)% + �# and �'' =
�%

�% + )#

In Figure 7 it is obvious that the IR Human class 
is so unique that the classifier does not have any trouble 
distinguishing it from the rest of the dataset, therefore as 
seen in the figure above its AUC equals to 1 and the 
ROC does not have much effect on its cumulative 
accuracy. Different classes though present different 
levels of difficulty for our classifier. The Chimp class as 
seen above, has an AUC of 0.91, which means that the 
ROC can significantly improve its cumulative accuracy if 
a is picked wisely.

The Normal Threshold would pick the point on 
the graph where the False Relevant Rate is minimum for 
a True Relevant Rate of 1, hence, for the Chimp graph, 
the ¹0.57. 1.00º point. Using our ROC algorithm we can 
pick any other point on the graph, such as the ¹0.20. 
0.84º point which is the one further away from the blue 
line that represents a random guess. By doing this, 

although we slightly decreased our TRR, we get a great 
increase in FRR, which results to a significantly higher 
cumulative accuracy. This accuracy increase is going to 
be clearly presented and discussed in the next Section.

Tables 1, 2 and 3 demonstrate the usefulness of 
the ROC method in classifying Relevant images and 
rejecting an image if it is Irrelevant. In order to highlight 
the ROC capabilities, we compare our results to the two 
baseline methods, the "No Irrelevant" and the "+1 
Class".

The first baseline result (No Irrelevant), was 
produced by training the classifier only on labeled 
images of the relevant classes. This is the case where 
although we have unlabeled images for the irrelevant 
classes, we do not use them, expecting the labeled 
images to have enough meaningful features to
accommodate recognizing the irrelevant ones. To 
evaluate this method, we use our Normal Threshold 
Score Criterion discussed above where we set the 
lowest correct relevant training score as the threshold 
for each class. During testing, if the image’s highest 
class score is larger than the respective threshold then 
its classified as Relevant, if not as irrelevant.

The second baseline result, which we call "+1 
Class", was generated by training the classifier to 
recognize the relevant classes along with one extra 
class which encapsulates all irrelevant images. During 
the training of the classifier, all unlabeled images of the 
Irrelevant classes were assigned to an extra class. The 
evaluation is being done by simply comparing the 
highest scoring index of every image with the correct 
target.

Table 1 shows how the baseline methods 
scored for both relevant and irrelevant images 
compared to the Low-Shot Classifier, with and without 
applying the ROC optimization for the Top-1 selections.

Table 1: Low-Shot Classifier Compared to Baseline 
Examples for the Top-1 Selections

As "Normal" we describe the dataset consisted 
of 50 relevant and 50 irrelevant Caltech256 classes and 
as "Infrared" the dataset where we have substituted 8 of 
the relevant classes with IR ones. Both datasets are 
described in Section 3. The Low-Shot Classifier results 
are obtained by running the algorithm described up until 
Section 6 and the Low-Shot Classifier with ROC by 
adding the ROC extension. "R" and "I" are the relevant 
and irrelevant classification accuracy re-spectively. The 

Normal Dataset Infrared Dataset
Classifier R I R I

Low-Shot Classifier 70.8 % 74.8 % 78.2 % 75.4 %
Low-Shot Classifier w/ ROC 64.8 % 87.8 % 71.8 % 89.8 %

+1 Class 49.2 % 91.4 % 56.2 % 92.2 %
No Irrelevant 72.4 % 47.8 % 78.6 % 52.4 %
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numbers shown in the tables are the Top-1 percentages 
of images that got classified correctly during evaluation.

It can be observed that the baseline methods 
are unable to classify decently both groups of images. 
The +1 Class method seems to over-train the classifier 
on recognising the unlabeled images failing to put the 
labeled ones in the correct classes. This happens most 
likely due to the unbalanced training data, as the 51st 
class has as many images as the rest 50 together. On 
the other hand, by using only labeled images, we train 
the classifier to specifically recognise the labeled group, 
failing to filter out the unlabeled images "noise".

In the first row of Table 1, the results of our 
classifier without the ROC extension show that our loss 
function combined with our unique target matrix and the 
threshold score criterion can recognize equally well both 
labeled and unlabeled images. It is notable that for the 
relevant group our method loses a small amount of 
accuracy compared to the label-specific baseline 
method but does substantially better in identifying 
irrelevant images.

Figure 8: The legend follows the color coding of the four
different methods in Table 1. For each of the four 
methods the graph has four different sub color groups 
with three data points each. The four different sub 
groups represent the different datasets discussed in 
Section 2 and the data points are the three different pre-
trained feature extractors used.

The ROC method greatly increases the 
unlabeled images recognition, to the modest expense of 
the labeled images. The table shows the importance of 
using the ROC to greatly increase the cumulative 
accuracy. Our ROC classifier increases by 12% the 
cumulative recognition scores compared to the +1
Class method and by 25.4% compared to the label
exclusive transfer learning method.

The described results are also depicted in the 
Accuracy Comparison Graph in Figure 8. For every 
method discussed we use three different ResNet10 

feature extractors (BatchSGM, SGM, L2) in order to 
show the consistency of our classifier results.

With a few exceptions, no matter the feature 
extractor or the nature of our dataset (including infrared, 
including more unlabeled images), our proposed 
method (green data points) not only provides a higher 
cumulative accuracy but also eliminates the bias 
between labeled and unlabeled images by classifying 
both equally well when compared to the baseline
approaches. In the graph we introduced the results of 
our extended datasets which consists of more unlabeled 
images.

Table 2 offers a closer look to the comparison 
of the two extended datasets.

Table 2: Extended Datasets Comparisons

We follow the same notation in Table 2 as used 
in Table 1, with the only difference being that the "+50" 
and "+150" Irrelevant datasets are the two expanded 
datasets noted in Section 3. Although it is clear in both 
in Table 2 and the plot in Figure 8, that our method still 
scores better in a cumulative perspective, we can also 
observe that biases against the relevant (in Low-Shot 
Classifier with ROC algorithm) or irrelevant (in Low-Shot 
Classifier algorithm) group begin to occur when 
increasing the amount of irrelevant images.

We see that for the Low-Shot Classifier the more 
we increase the irrelevant to relevant ratio the worse we 
score on the irrelevant part. This might seem counter 
intuitive as we would expect that the more unlabeled 
images we see during training, the better we would be 
able to recognise them. In reality, we introduce many 
more feature elements on the irrelevant part, which 
leads to consequently eliminating their uniqueness.

When introducing the proposed ROC approach 
on the second row (Table 2) we do not observe the 
introduction of bias because the ROC threshold has 
been adjusted in such a way that it is non discriminating 
against any group (OptimalROC). On Table 3 we 
present the results of our adjusted ROC Classifier being 
used on the +150 Irrelevant dataset. The same behavior 
is observed when we test the rest datasets.

The "Optimal ROC" and "No Irrelevant" rows 
correspond to Table 2 second and fourth data rows. 
Putting a constraint on how much we are willing to shift 
the )( to limit the loss in relevant, affects negatively the 
irrelevant. We desire to find a percentage which during 
testing gives us a decent cumulative accuracy without 

+ 50 Irrelevant + 150 Irrelevant
Classifier R I R I

Low-Shot Classifier 79.0 % 66.3 % 76.4 % 56.7 %
Low-Shot Classifier w\ ROC 73.0 % 84.4 % 59.0 % 93.0 %

+1 Class 36.8 % 97.7 % 22.0 % 99.2 %
No Irrelevant 78.6 % 51.9 % 78.6 % 52.9 %

Using Unlabeled Data for Increasing Low-Shot Classification Accuracy of Relevant and Open-Set 
Irrelevant Images

© 2022 Global Journals

G
lo
ba

l 
Jo

ur
na

l 
of
 C

om
pu

te
r 
Sc

ie
nc

e 
an

d 
Te

ch
no

lo
gy

  
  

  
 V

ol
um

e 
X
X
II 

Is
su

e 
II 

V
er
sio

n 
I 

  
  
 

  

18

  
 (

)
D

Y
e
a
r

20
22



 
 

 
 

 
 

  

 
 

 
 
 

 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 

 

    

 
 

 
 

 
 

 
 

 
 

 
 

 

 
  

 
 

 

 
  

 

 
 

 
 

 
  

 

 

 
 

 
 

 
 

 
 

 

 
 

 
 

  
 

 
 

 
 

 
 
  

big losses on the Relevant part. This could be imagined 
as turning a knob to tune our ROC

Table 3: ROC Adjustment for the +150 Irrelevant dataset

implementation. This can be specific in every 
application, therefore an open ended approach is 
adopted.

A100% constraint would be the Low-Shot 
Classifier without ROC, as we set our Threshold Scores 
to be the lowest correctly classified irrelevant picture in 
every class. On the table presented, a 90% Constraint 
means that we ask our ROC algorithm to keep our 
thresholds to a value that will not hurt our correct 
relevant guesses more than 10% during the calculation 
of the . Therefore these constraints are applied when 
using the training images and they differ from the 
percentages encountered in the testing (Table 3). As we
can see, for the specific case we can compromise with 
an 18.7% total increase instead of the the 20.5% of the 
optimal case, in order to get a more equal recognition 
accuracy.

VI. OSLS Classifier Results

The Low-Shot Classifier is able to recognise 
images from the relevant classes and also identify 
irrelevant images from the classes it has seen during 
training. Ideally, during operation we desire to recognise 
objects that are not seen at all during training, which is 
the main objective of openset recognition. To achieve 
this we extend the capabilities of the Low-Shot Classifier 
described in Section 3 to recognizing unseen images 
resulting the OSLS Classifier. The unseen samples are 
the sub-group of the irrelevant classes that do not get 
involved in training but it is still expected that the OSLS 
Classifier recognises them as irrelevant. This is 
accomplished by randomizing the selection of the 
irrelevant samples in every training epoch of the OSLS 
classifier. More specifically, during the training of the 
Low-Shot Classifier, there are 2 number of classes each 
of which contain= number of training images for both 
relevant and irrelevant datasets (only the images for the 
relevant dataset are labeled). This set of images is 
the same in each epoch. The difference in training the 
Open-Set Low-Shot Classifier seen in Figure 9 is that the 
irrelevant images are different in each epoch, and 
selected randomly from the pool of unlabeled irrelevant 
images while still keeping the total number of irrelevant 

training images in each epoch the same with the
relevant part ( ). By introducing this imbalance and 
by not repeating the same irrelevant samples in each 
epoch, our classifier is able to generalize better on the 
irrelevant part, yielding better classification accuracy for 
the irrelevant and unseen testing samples. In all results 
presented in this paper the testing images are always 
different than the images used during training.

Figure 9: The two differences of the OSLS method 
compared to the Low-Shot Classifier: We extend our 
testing dataset to include 10 classes of unseen images 
(each containing 10 testing samples) while also 
extending the irrelevant part of the training dataset by 
introducing randomness and imbalance between 
epochs and classes respectively. During training, a 
different selection of irrelevant samples and the same 
selection of relevant samples is used in every epoch.

A comparison between the traditional (Low-Shot 
Classifier) and the randomized irrelevant training of the 
Low-Shot Open-Set Classifier is presented in Figure 10. 
In this examination, the Low-Shot Classifier training uses 
the same relevant and irrelevant pictures and classes 
(40) in every training epoch, whereas the OSLS uses the 
same set of relevant classes (40) and pictures but 
samples randomly a different group of irrelevant training 
images in every epoch. For instance, in the 40 images 
per class case, the Low-Shot Classifier is trained on the 
same 40 relevant and irrelevant classes which all include 
the same 40 pictures for each class. For the OSLS 
Classifier case, although the 1,600 relevant images
(from 40 different classes) are kept the same throughout

R I
No Irrelevant 78.6 % 52.9 % Increase
Optimal ROC 59.0 % 93.0 % + 20.5 %
80% Constraint 61.4 % 90.2 % + 20.1 %
90% Constraint 68.2 % 82.0 % + 18.7 %
92.5% Constraint 72.0 % 77.0 % + 17.5 %
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Figure 10:
 
The accuracy box plots for the three different testing groups are presented: in red the Irrelevant, in blue 

the
 
Unseen and in green the Relevant results. For every Images per Class case, ten different random tests are 

performed in
 
order to quantify the uncertainty of each case study. The box plot sides

 
represent the median of the 

lower and upper half of
 
the different results set respectively. The lines extending from the boxes (whiskers) indicate 

the variability outside the upper
 
and lower quartiles while the red line within the boxes represents the median of the 

entire spread. Lastly, the red crosses
 
represent the accuracy of the outlier runs and the dashed line connects the 

median accuracy values of all the different cases.
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 
  

 
 

 
 

 
 

 
 

 
 

  
 

  
 
 
 
 
 

 
 

 

 

 

 

 
 

 

 

 
 

 

 
 

 

 

 

 

 

 
 

 

training, the 1,600 irrelevant images in each epoch are 
picked randomly from a pool of 20,000 samples (500 
samples for each one of the 40 classes), introducing not 
only randomness but also imbalance between class 
samples.

Figure 10 demonstrates that by introducing 
randomness and class imbalance during training, for 
every Images per Class case there is a slight decrease 
in the relevant accuracy, but a substantial increase in 
the testing performance of both irrelevant and unseen. 
All the results below use the ROC threshold that 
produces the highest combined relevant and irrelevant 
score.

Table 4: The complete set of results for the OSLS 
method for a variable number of classes and images 
per class. Horizontally are presented the results for a 
variable number of pictures per class (P). Vertically are 
presented the results for a variable number of classes 
(C) for each one of the three testing sample categories. 
For each different example, the mean and standard 
deviation of 10 different random tests is presented for 
the Top-1 accuracy.

classifier on 10 Relevant and 10 Irrelevant classes each 
one 10 of which includes 40 training samples- a total of 
400 labeled and 400 unlabeled images. By testing using 
10 samples per class from 10 relevant, 10 irrelevant and 
10 unseen classes the classifier achieves Top-1 
accuracy scores of 0.89 0.04, 0.98 0.02 and 0.96 
0.02 respectively, with a very low variance between the 
random runs (f 0.04).

C
P

5 10 20 30 40

Relevant
5 0.56 ± 0.12 0.61 ± 0.07 0.75 ± 0.09 0.78 ± 0.03 0.83 ± 0.08
10 0.53 ± 0.07 0.66 ± 0.07 0.83 ± 0.03 0.84 ± 0.03 0.89 ± 0.04
20 0.53 ± 0.07 0.66 ± 0.02 0.78 ± 0.02 0.83 ± 0.01 0.84 ± 0.05
30 0.51 ± 0.05 0.66 ± 0.03 0.74 ± 0.02 0.77 ± 0.02 0.78 ± 0.01
40 0.51 ± 0.05 0.66 ± 0.02 0.73 ± 0.02 0.75 ± 0.01 0.76 ± 0.02

Irrelevant
5 0.95 ± 0.08 0.97 ± 0.03 0.98 ± 0.02 0.98 ± 0.02 0.99 ± 0.01
10 0.93 ± 0.04 0.97 ± 0.04 0.97 ± 0.01 0.98 ± 0.01 0.98 ± 0.02
20 0.95 ± 0.04 0.98 ± 0.01 0.97 ± 0.01 0.96 ± 0.01 0.97 ± 0.02
30 0.97 ± 0.02 0.98 ± 0.01 0.97 ± 0.01 0.96 ± 0.01 0.96 ± 0.01
40 0.96 ± 0.02 0.95 ± 0.01 0.95 ± 0.01 0.95 ± 0.01 0.94 ± 0.01

Unseen
5 0.93 ± 0.06 0.96 ± 0.02 0.97 ± 0.03 0.98 ± 0.02 0.98 ± 0.01
10 0.95 ± 0.02 0.95 ± 0.04 0.97 ± 0.02 0.96 ± 0.02 0.96 ± 0.02
20 0.95 ± 0.05 0.98 ± 0.01 0.97 ± 0.01 0.95 ± 0.03 0.96 ± 0.01
30 0.96 ± 0.02 0.97 ± 0.02 0.97 ± 0.01 0.95 ± 0.02 0.93 ± 0.01
40 0.96 ± 0.02 0.96 ± 0.02 0.95 ± 0.02 0.95 ± 0.02 0.94 ± 0.01
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All the results presented in the box plots of this 
text are for an OSLS classifier that is trained on 40 
relevant and 40 irrelevant classes, both of which have 
the amount of relevant images per class specified in the 
x-axis. Similar works in the open-set literature [10, 7, 25] 
are using a lower number of classes during training and 
testing (10 to 95 classes compared to the total number 
of classes used in this paper ranging between 90 and 
250). To show how the OSLS Classifier performs in tests 
where the same order of classes are used, we vary the 
number of relevant and irrelevant classes used during 
training. Although it is of interest to recognize samples 
of as many classes as possible (a maximum of 40 as 
presented in Figure 10), by observing Table 4 it is 
evident that the OSLS Classifier achieves very high Top-
1 accuracy scores in situations where the relevant and 
irrelevant classes we are trying to detect are limited.

We take as an example the case (in bold) where
we train the



 
 

 
 

 
 

   
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

  
 

 

 

  
 

  

 
 

 
 

 
  

 

  

  

 
 

 
 

 

 
 
 

 
  

 
 

 

 

 
 

 
 

 

of the proposed method we attach the classifier to 
deeper feature extractors. Throughout the paper the 
feature extractor used to test any classifier was a pre-
trained ResNet18 provided by PyTorch1. In Figure 11
results for a classifier similar to the one in Figure 10 are 
presented with the only difference being that the feature 
vectors are produced using the deeper ResNet34. 
Improvements in accuracy ranging from _ 0.11 to _ 0.02 
(for the 5 and 40 Images per Class cases respectively), 
compared to those of Figure 10b, can be observed for 
the relevant testing samples while virtually no 
improvement is observed for the irrelevant and the 
unseen samples. Similar results are expected if the
OSLS Classifier is used as a head for deeper networks 
which produce feature vectors of higher quality. The 
improvements can be attributed to the fact that a deeper 
network has the ability to produce better quality feature 
representations.

The image feature representations used in this 
study are obtained raw, before any normalization is 
applied to them. As mentioned in Section 2, we use 
Equation 1 to normalized the input feature vectors. 
Figure 12 exhibits a decrease in accuracy if the features 
are normalized using the popular Softmax normalization 
commonly used in classification layers.

Figure 12: Box plots for the OSLS Classifier presented in
Figure 10b if Softmax was used to normalize the training 
and testing samples.

More specifically, the OSLS results in Figure 
10b show an improvement compared to Figure 12 that 
ranges from 0.19 to 0.15 for the relevant, 0.17 to 
0.08 for the irrelevant and 0.26 to 0.08 for the unseen 
testing samples (for the 5 and 40 Images per Class 
cases respectively).

Finally, in order to demonstrate the value of the 
OSLS classifier, we compare it to the two baseline 
examples mentioned in Table 1. The first alternative 
method (Figure 13a) for classifying relevant samples 
along with rejecting irrelevant and unseen images is to 
group all the later in one class during training by 
assigning the extra class label to them ("+1 Class"). The
second method (Figure 13b) the OSLS Classifier is 
compared to is a normal classification layer which is
trained only on relevant images but is expected to 
recognize irrelevant and unseen images too ("No 
Irrelevant").

By comparing Figure 10b to Figure 13a, for a 
low number of samples per class, the "+1 Class" 
method performs equally well or in cases even better in 
all three categories compared to OSLS, with relevant 
accuracy scores ranging from 0.6 to 0.7 for the 5, 10 
and 20 Images per Class cases while unseen and 
irrelevant recognition reaching accuracies 0.96. When 
enough data samples per class are available though, 
the OSLS method improves the relevant accuracy by 
0.05 and 0.1 for the 30 and 40 images per class cases 
respectively. The improvement in relevant image 
classification that the OSLS classification (Figure 10b) 
achieves is significant compared to the minor ( 0.01) 
decrease in relevant and unseen accuracy scores.

The OSLS classifier is meant to be used as the 
final layer of any CNN that is expected to recognise 
samples that belong to the training classes while 
identifying as irrelevant images that are not relevant 
regardless if they originate from seen or unseen during 
training datasets. In order to demonstrate the versatility 
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The benefits of introducing irrelevant images 
during trainingare evident when comparing the results of 
Figure 13b (No

Figure 11: Box plots for the LSOS classifier presented in
Figure 10b if the deeper ResNet34 is used to reduce the 
image samples to feature vectors.



 
 

 
 

 

 
  

 

 

 
  

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

  
 

 
 

  

 
  

 
 

 

  
  

 
 

 
 

 
 

 

Figure 13: (a) The +1 Class method groups all the irrelevant samples in one class during training and expects the 
irrelevant and unseen testing samples to be classified like they belong to the extra class. (b) The No Irrelevant 
method is a normal classification layer which is trained only on relevant images although expected to
recognise irrelevant and unseen images too.

Irrelevant) to the OSLS Classifier results in Figure 10b. If
no irrelevant images are available during training and 
the number of relevant training images per class is small 
(5 and 10), a normal classification layer tends to over-fit 
on the later. Due to this over-fitting, the ROC Threshold 
rejects most of the samples during testing resulting to 
very high ( 0.9) irrelevant and unseen and very low (
0.53) relevant accuracy scores. When there are more 
training images per class, a significant increase in 
relevant accuracy can be observed which is followed by 
a decrease in irrelevant and unseen accuracy. More 
specifically, assuming similar specifications
(normalization, loss function etc.), if a single layer 
classifier is trained on 40 classes, each one including 40 
images, the mean relevant, irrelevant and unseen 
accuracies during testing are 0.78, 0.72 and 0.73 
respectively. If an equal number of unlabeled images 
are used during training, in the manner specified by the 
OSLS method, the mean relevant accuracy decreases 
by 0.02 while the irrelevant and unseen accuracy scores 
increase by 0.22 and 0.21 respectively. The trade-off
between a very small decrease in relevant accuracy and 
a ten times larger increase in both irrelevant and unseen 
classification performance is the best demonstration of 
how the OSLS Classifier can be utilized in real-life 
applications.

The proposed OSLS Classifier using the ROC 
Threshold Score criterion not only makes the resulting 
model more flexible and easy to customize depending 
on the needs of the datasets, but also makes the 
method flexible for any application. This is a specifically 
interesting feature of our work, as we can use the 
classifier as an extension to any image recognition 

algorithm which desires to filter out irrelevant and 
unseen images without the expense of labeling.

VII. Conclusion

In military reconnaissance applications a 
capability is needed where objects of interest -such as 
adversary targets- are reliably distinguished from 
objects of no relevance. Although a modest amount of 
labeled examples for the targets might be available to 
use during the training of the classifier, labels for the 
irrelevant objects might be scarce or even not possible 
to obtain.

To tackle this problem in this work we present 
an Open-Set Low-Shot Classifier which is trained using 
a modest number of labeled images from the relevant 
classes and unlabeled irrelevant images. A partially 
labeled target matrix is used for developing an 
analytically differentiated loss function for training the
classifier. At each training epoch a random selection of 
the irrelevant images used in the training is introduced.
During the training an ROC approach is used for
determining a threshold score value for each relevant 
class. The latter is used for providing a balanced 
performance between classifying relevant samples and 
identifying irrelevant images.
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During testing, this information is used for 
determining when a candidate image is either relevant, 
irrelevant or even unseen during training. The OSLS 
Classifier performs better compared to baseline 
classifying approaches, is able to handle the 
classification of many more classes compared to similar 
open-set approaches in the visual recognition literature
and is able to demonstrate sufficient balance with high 
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