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1. Introduction  

1.1 Radioisotopes in nuclear medicine 

Nowadays, many  different stable and radioactive isotopes, each with unique physical and 
chemical properties, play significant roles in technological applications of importance to our 
modern society and are substantial to scientific research. One of the most common 
applications is the use of the radioisotopes in medicine. Medical radioisotopes are used to 
label some special chemical compounds to form radiopharmaceuticals.  
Radiopharmaceuticals are used extensively in the field of nuclear medicine in three main 
branches. The largest and the most common type involve diagnostic procedures in which a 
radionuclide in a chemically suitable form is administered to the patient, and the 
distribution of the radioactivity in the body is determined by an external radiation detector 
(Qaim, 2008). The results are in the form of image of the involved organ, which provides 
information about the functioning of person’s specific organs via emission tomography. The 
second branch of nuclear medicine deals with radionuclide techniques that are used for the 
analysis of concentration of hormones, antibodies, drugs and other important substances in 
samples of blood or tissues. The third branch is radiation therapy, which is the ultimate aim 
of all diagnostic investigations. Here the tissues or organs are treated with radiation and 
restored to the normal functions in the human body (Loveland, et al., 2006).   
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The two fundamental considerations in the administration of radioactivity to the human 
body are (Krane, 1987): 
 Efficient detection of the radiation from outside the body, 

 Radiation dose caused to the patient. 
Diagnostic techniques in nuclear medicine use radioactive tracers which are easily 
detectable and which help to investigate various physiological and metabolic functions of 
the human body. Diagnosis is usually conducted by short-lived radionuclides, generally 
attached to a suitable chemical compound. Depending on the nature of the 
radiopharmaceutical, it may be inhaled, ingested, or injected intravenously (Stőcklin, et 
al., 1995). The radiation emitted by the radionuclide provides different kinds of 
information, as required for diagnosis. Radionuclides are powerful tools for diagnosis due 
to three reasons: 
1. The mass of the sample is infinitesimally small, as low as 10-10 g of radioactive material, 

so it does not disturb the biological equilibrium. 
2. The radioactive form of an element behaves exactly the same way as the non-

radioactive element. 
3. Each radioactive material spontaneously decays into some other form with emission of 

radiation. This radiation can be detected from outside the body.  
Depending upon the nature of radionuclide, today two different tomographic procedures 
are available for imaging:  

 Single photon emission computed tomography (SPECT)  
 Positron emission tomography (PET)  
In SPECT, a single or a dominant photon is detected by a gamma camera, which can view 
organs from many different angles (Khan, 2003). The camera makes an image from the 
points where the radiation is emitted; this image achieved by the camera is enhanced on a 
computer and can be viewed by a physician.  
Positron Emission Tomography (PET) is a more modern technique in which a positron-
emitting radionuclide, attached to a proper chemical compound, is introduced in the body, 
usually by injection, where it accumulates in the target tissue. As it decays it emits a 
positron, which at first loses its kinetic energy in the tissue and then promptly combines 
with a nearby electron resulting in the simultaneous emission of two identifiable photons in 
opposite directions (180o). These are detected by two detectors in coincidence. An array of 
such detectors is known as a PET camera, it gives very precise and sophisticated 
information on the place of annihilation. The most important clinical role of PET is in 
oncology, with a suitable fluorine-18 labelled compound as the tracer, since it has been 
found to be the best non-invasive method of detecting and evaluating most cancers. It is also 
well used in cardiac and brain imaging (Qaim, et al., 1993). 
The radiation therapy is often done by using external beams of protons, neutrons, 
electrons, or photons (Wolf & Jones, 1983). As far as radionuclides are concerned, there 
are many possibilities to utilize them in therapy. One such possibility is to use the 
radiation emitted by the radionuclides, e.g. electrons and high-energy ┛-rays as in the case 
of 60Co. However, in recent years internal radiotherapy has also been gaining enhanced 
attention. Internal radiotherapy involves the use of radionuclides of suitable decay 
characteristics (Qaim, 2003). When a therapeutic radionuclide is delivered to a specific 
organ by using a biochemical pathway, it is known as open source therapy or 
endoradiotherapy (Qaim, 2003; Krane, 1987; Wolf & Barclay Jones, 1983). This type of 
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radiotherapy is a unique cancer treatment modality. It is systemic and non-invasive. The 
uptake and retention in the tumour can be assessed with a tracer study before 
administering a therapeutic dose to the patient. 
The major criteria for the choice of a radionuclide for endotherapeutic use are suitable decay 

characteristics and suitable biochemical reactivity. Concerning the decay properties, the 

desired half-life is between 6 hours and 7 days and the emitted corpuscular radiation should 

have a suitable linear energy transfer (LET) value and range in the tissue (Qaim, 2003; 

Sharp, et al., 2005). The ratio of non-penetrating to penetrating radiation should be high. The 

daughter should be short-lived or stable. The stability of the therapeutically pharmaceutical 

is demanded over a much longer period than that in the case of a diagnostic pharmaceutical. 

Thus, the choice falls on about 30 radionuclides. Most of them are ┚- emitters but several of 

them are  emitters and Auger electron emitters. 

1.2 Medical radioisotopes production 

The main processes to produce the medical radioisotopes are neutron activation, nuclear 

fission, charged particles induced reactions and radionuclide generators. Mostly, chemical 

separation is needed to separate the required isotope from targets and any produced 

impurities before using in the labeling process. 

The medical radioisotopes can be produced using nuclear reactors either by neutron 

activation or by nuclear fission. The first procedure depends mostly on the thermal neutron 

capture process (n,┛). These isotopes will decay by means of ┚- emission accompanied with 

some gamma rays and could be used in treatment or Single Photon Emission Computed 

Tomography (SPECT). The second procedure based on the fission of a heavy nucleus, from 

the fuel after thermal neutron absorption. Some of the produced fission fragments have 

found medical applications such as 99Mo (used as 99Mo/99mTc generator), 131I, and 133Xe 

(Qaim, 2004). 

Charged particle accelerators are another tool for producing medical radioisotopes using 

charged particle induced reactions on some stable isotopes. The accelerators used for this 

purpose should deliver ion beam with enough energy suitable for the used nuclear reaction 

and high beam intensity for production of reasonable radioactive yield in a reasonable 

irradiation time. Usually cyclotron accelerators with energies in the range 10 to 50 MeV are 

suitable for this purpose. 

Cyclotron radionuclide production involves various constraints. First, a target has to be 
prepared, quite often from isotopically enriched material and energy should be carefully 
chosen to reduce, as much as possible, the impurities level. Second, the target should be 
stable in respect to ionizing radiation and heat generated by slowing down of the charged 
particles. Therefore, targets should be as thin as possible, just enough to degrade the 
incident energy to the required threshold energy, and they should display good heat 
conductivity to allow efficient cooling. After irradiation, the target is dissolved and various 
radiochemical operations are performed to isolate and purify the radionuclide. 
The produced isotopes will usually be neutron deficient. This type of isotopes decay with ┚+ 
and/or EC accompanied with specific gamma rays and can be used for Positron Emission 
Tomography (PET) such as 11C, 15O, 13N, and 18F or SPECT such as 111I, 67Ga and 201Tl 
(Lamberecht, 1979; Qaim, 2001). A number of isotopes as shown in Table 1 are technically 
available for use in medical applications (Troyer & Schenter, 2009). 
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Purpose Accelerator-produced Reactor-produced 

Therapeutic 
Isotopes 

64Cu, 67Cu, 77Br, 88mBr, 88Y, 89Zr, 103Pd, 
111In, 124I, 186Re, 211At 

32P, 47Sc, 60Co, 64Cu, 67Cu, 89Sr, 90Sr, 90Y, 
103Pd, 103Ru, 106Ru, 109Cd, 109Pd, 117mSn, 
115Cd, 125I, 131I, 137Cs, 145Sm, 153Sm, 165Dy, 
166Dy, 166Ho, 169Er, 169Yb, 180Tm, 175Yb, 177Lu, 
186Re, 188Re, 192Ir, 195mPt, 198Au, 199Au, 211At, 
213Bi, 225Ac, 241Am 

Diagnostic 
Isotopes 

11C, 13N, 15O, 18F, 55Fe, 57Co, 61Cu, 
64Cu, 67Ga, 74As, 76Br, 81mKr, 82mRb, 
94mTc, 97Ru, 111In, 123I, 124I, 179Ta, 201Tl 

3H, 14C, 51Cr, 64Cu, 97Ru, 99mTc, 123I, 131I, 133Xe, 
153Gd, 195mPt 

Table 1. Common medical isotopes sorted by use category and production method (Troyer 
& Schenter, 2009) 

1.3 Molybdenum and technetium in nuclear medicine 

Molybdenum is used as a target material for the production of medically important 

radioisotopes, such as 99mTc/99Mo, 96(m+g)Tc and 94mTc.  
94mTc (52min), has shown its applicability as a PET isotope (Rösch and Qaim, 1993; Nickles, 
et al., 1993; Sajjad and Lambrecht, 1993; Rösch, et al., 1994; Fabbender, et al., 1994; Qaim, 
2000; Hohn, et al., 2008). 96Tc (4.28d) has been proposed for the use in prevention of 
coronary restenosis by Fox (2001). Despite of favorable moderate half-life, other isotopes of 
technetium, like, 93Tc (2.75h), 94Tc (4.883h) and 95Tc (20.0h) are seldom discussed. Specially, 
radiological half-life of 94Tc is ideal for diagnostic purposes. 95Tc (20.0h), due to its 
comparatively longer half-life is also promising for tracking long processes, like, metabolic 
pathways for brain and heart, studies with proteins, anti bodies, etc. Among short-lived 
radionuclides, 93Tc (2.75 h) is another promising isotope for imaging as suggested by 
(Lambrecht and Montner, 1982). 
One of the most important medical radioisotopes is 99mTc (T½= 6.01 h), which has a gamma 
ray energy of about 140 keV. The fact that both its physical half-life and its biological half-
life are very short, as seen in Table 2, leads to a very fast clearing from the body after an 
imaging process. A further advantage is that the gamma is a single energy, not accompanied 
by beta emission, and that permits a more precise alignment of imaging detectors. 
 

Isotope 
Half-lives in days 

TPhysical TBiological TEffective 

99mTc 0.25 1 0.20 

Table 2. The physical, biological and effective half lives for 99mTc 

99mTc is a vital part of diagnostic tests for heart diseases and cancers; It accounts for over 

80% of all diagnostic nuclear medicine procedures worldwide. According to the latest 

survey, the world demand for production of 99Mo/99mTc is estimated to be around 7 

kCi/week and further growth is predicted (Takács, et al., 2003). Currently, only five nuclear 

reactors produce 99Mo/99mTc leading to a predicted shortage in covering the world demand. 

Consequently, many studies nowadays concentrate on producing 99Mo generators with an 

alternative method using cyclotron accelerators (Van der Marck, 2010; Gull, 2001).  
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99mTc is obtained from the decay of its parent isotope 99Mo. It was discovered in 1937, and 

the first 99Mo/99mTc generator was invented at the Brookhaven National Laboratory in the 

U.S. in 1957. General usage of 99mTc began in the early seventies when the Chalk River 

Laboratory established routine production of 99Mo, its parent isotope (Tammemagi and 

Jackson, 2009; Ullyett, 1997). 99mTc is versatile and can be used to produce some 20 different 

compounds of radiopharmaceuticals. There are various technological options for the 

production of 99mTc/99Mo listed in Table 3.  

 

R
ea

ct
o

rs
 

Fission of 235U n+235U→99Mo + xn + other fission products 

Neutron activation of 98Mo n + 98Mo→99Mo 

A
cc

el
er

at
o

rs
 Photo-fission of 238U Photon+238U→99Mo + xn + other fission products 

100Mo transmutation Photon + 100Mo→ 99Mo + n 

Direct 99mTc production P + 100Mo→ 99mTc + 2n 

Table 3. The various technological options for the production of 99mTc/99Mo 

The usual production of 99Mo for nuclear medicine depends on:  

1. The neutron induced fission of 235U, which results in expensive but high specific activity 
99Mo (IAEA-TECDOC-1065, 1999), or 

2. The (n,┛) nuclear reaction with 98Mo, 24% using natural Molybdenum, resulting in 
inexpensive but low-specific activity 99Mo. 

Thus, for either method, at least one neutron is required for the reaction.  

Neutrons can be produced from accelerator reactions where the charged particles strike 

heavy atoms, also from alpha or gamma reactions with light atoms, such as beryllium or 

lithium. However, to produce the large quantities of neutrons needed for production of 

useful quantities of 99Mo, the most effective source is a critical nuclear reactor operating at 

powers in the range of megawatts. Each fission process of an atom of 235U produces an 

average of about 2.5 neutrons. In an operating reactor, these neutrons either are absorbed by 

materials in the reactor or escape from the boundaries of the reactor. One neutron must 

cause fission in another 235U atom. Of the remaining 1.5 neutrons from each fission process 

in a critical reactor, some small fractions are available for production. The most appropriate 

target material for low specific activity 99Mo production is molybdenum trioxide (MoO3); 

neutron activation occurs via the reaction 98Mo(n,┛)99Mo. 

The potential use of accelerators for these purposes is another issue of current scientific and 

technological interest. Recently, a matter of concern has been the availability and supply of 
99Mo for the manufacturing of generators. These concerns arose from several factors 

including, amongst others, the shutdown of some nuclear reactors, uncertainty of reliable 

operating condition for radioisotope production and easy availability of enriched 235U target 

materials.  

More recently, the utilization of charged particle accelerators, either LINAC's or cyclotrons, 

has been discussed as a potential alternative technology to the fission route. These 

discussions have been prompted by basic research concerns as well as the need to explore 
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new production routes to offset the perceived situation of future problems with the 

availability of 99Mo if no new dedicated reactors are licensed. 

The production of 99Mo via the 100Mo(p,pn) reaction was evaluated. A good agreement was 
found among the different excitation functions available. However, because of the rather 
low cross-section values found in these measurements, the production of 99Mo via this 
potential process was found to be largely impractical. A significant limiting factor of this 
approach appears to be the need for a large inventory (tens of kg quantities) of enriched 
100Mo, the logistical considerations of its distribution and recovery, and the cost  
(2 US $/mg). Furthermore, proton accelerators delivering mA beam on target would be 
required including the development of high power targets. 
The production of 99mTc via the 100Mo(p,2n) reaction was also evaluated, and the cross 

section data available were found to be consistent and in good agreement. Extrapolating 
99mTc yields obtained from this data, using the operational conditions of the existing 30 MeV 

accelerator technologies, suggest that large-scale (kCi) production of 99mTc is possible 

(Glenn, et al., 1997). 

1.4 Nuclear data needs 

The excitation function measurements of charged particle induced reactions are needed to 

improve and study the ideal way for medical radioisotope production. The optimization of 

nuclear reaction for the production of radioisotope at a cyclotron involves a selection of the 

projectile energy range that will maximize the yield of the product and minimize that of 

radionuclide impurities.  The IAEA Coordinated Research program (CRP) which deals with 

all aspects of the production of medical radioisotopes that can be used for diagnostic and 

therapeutic purposes, requires a reliable database for production cross sections, not only for 

the main and the monitor reactions but also for the associated producing impurity reactions 

(IAEA-TECDOC-468, 2009). The program includes targetry (preparation, cooling and 

chemistry), yields, radionuclidic impurities, radiation dose from targets and target backings. 

By revising the database situation for 99Mo & 94,95g,95m,96(m+g),96g,99mTc production, it could be 

seen that the status of the present information is still not satisfactory for a detailed 

optimization of the production processes. Several authors (Kormali, et al., 1976; Takács, et 

al., 2002; Bonardi, et al., 2002; Uddin, et al., 2004; Khandaker, et al., 2006; Khandaker, et al., 

2007; Uddin, et al., 2008) have reported a variety data for proton-induced reaction cross-

sections on molybdenum in the medium-energy range, but large discrepancies can be found 

among them. These discrepancies limit the reliability of data evaluations. 

2. Experimental techniques  

The reaction cross-section of the proton-induced reactions on molybdenum were measured, 

in this work, as a function of proton energy in the range from the respective threshold for 

each contributing reaction (Ethr) to about 40 MeV using the activation method and the well-

established stacked foil technique combined with high resolution gamma-ray spectroscopy. 

2.1 Stacked foil technique 

By this method a series of thin target foils are put together to form the target as in Figure 1. 

Each target foil (Mo in this study) is followed by another material (mainly Al in our case) to 
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catch the ejected product nuclides (recoils) from the preceding Mo foil. This catcher foil is 

selected so that it does not produce any radioactive product by the given bombarding 

particle at the energy range used. The catchers should be also as low Z- material as possible 

to decrease the gamma attenuation during the activity measurements. Therefore, a pair of 

foils (Mo+Al catcher) will contain the total produced radioactive isotopes from the given Mo 

foil after the irradiation. The catcher Al foil contains only the ejected atoms (radionuclides) 

from the Mo implanted into it. The advantage of the stacked foil method is that one can get a 

whole excitation function curve using a lower number of irradiations. Another advantage of 

this method is that each target of the stack is irradiated with the same integrated beam 

charge. The main conceptual disadvantage of the staked foil technique is concerned with the 

energy straggling that is induced in the beam by passing through the stack of thin foils, 

recoil catchers and energy degraders (Zeigler, J.F., 1995). The inaccuracy of the foil thickness 

and surface roughness, which cause the accumulation of the error in energy calculations 

from the first to the last foil of the stack, which can be corrected by inserting some beam 

current monitor foils in different regions over the stack. 

 

 

Fig. 1. Schematic diagram of the stacked foil arrangements  

2.2 Target holder and experimental setup 

An aluminum target holder (12 mm aperture) was designed as shown in Figure 2. It also 

acts as a Faraday cup equipped with secondary electron suppressor by applying -300 Volts 

to an electrically isolated cylinder attached to the target holder. An earthed collimator ring 

(10 mm diameter) was placed in front of the holder facing the beam. This target holder was 

attached to a reaction chamber shown in Figure 3, which adapted for the activation purpose. 

The total charges collected by the Faraday cup have been integrated using current integrator 

circuit with good linearity at low current values. The target foils of 10 mm diameter were 

sufficiently larger than the proton beam diameter. Care was taken to ensure that equal areas 

of the monitor and the target foils intercepted the beam. The irradiation geometry used 

guaranteed that practically the whole beam passed through every foil. The secondary effect 
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of the interactions of the secondary produce neutrons with the molybdenum targets was 

checked by placing some foils in the end of the stack far behind the range of the fully 

stopped proton beam followed by the measurement of its activities. 

 

 
 

Fig. 2. Schematic diagram of the target holder and the Faraday cup 

 

 

Fig. 3. A photograph of the experimental setup 

2.3 Targets and irradiations 

Thin foils of molybdenum with natural isotopic composition were used as our main targets. 

There are 35 known isotopes of molybdenum ranging in atomic mass from 83 to 117, as well 
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as four metastable nuclear isomers. The seven stable isotopes are listed in Table 2 (Audi, et 

al., 2003). All unstable isotopes of molybdenum decay into isotopes of niobium, technetium, 

and ruthenium. 

 

Isotope Natural abundance (%) 

92Mo 14.84 

94Mo 9.25 

95Mo 15.92 

96Mo 16.68 

97Mo 9.55 

98Mo 24.13 

100Mo 9.63 

 

Table 4. Most stable radioisotopes of molybdenum 

The irradiations were performed using an external beam of accelerated protons with energy 

of about 40 MeV provided by K500 superconducting cyclotron at Texas A&M University, 

Cyclotron institute, USA. Two different sets of stacks were irradiated to cover the energy 

range from the respective threshold for each reaction up to 40 MeV. Each stack was made of 

several groups of targets; natMo (99.999% and 50 µm thickness) as the main target foils, natCu 

(99.98% and 125 µm thickness) were used as monitor foils that acted also as beam degraders 

and natAl (99.999% and 50,100 µm thickness) as catcher foils, all foils were supplied by 

Goodfellow, Cambridge, UK. The set of foils was pressed together to avoid air gaps between 

them, which could have influence on the vacuum and particles stopping. The proton energy 

degradation along the stack was determined using the computer program SRIM-2003 

assuming the incident energy was 40 MeV (Ziegler, et al., 1985). The irradiation conditions 

for each stack are shown in Table 5. 

 

Stack 
number 

Incident energy 
(MeV) 

Energy range 
(MeV) 

Irradiation time 
(hour) 

Beam current 
(nA) 

Stack 1 39.4 ± 0.4 39.4 - 19 30 min 27 

Stack 2 20.3 ± 0.8 20.3 - 0 50 min 24 

Table 5. Irradiation conditions in the experiments relevant to cross-section measurements 

2.4 Monitor reactions  

To confirm the cyclotron beam intensity and energy, a thin copper monitor foil (50 ┤m) was 

placed in the front of the stack (Al-Saleh, et al., 2006). Copper is an ideal target material with 
respect to its availability, physical, mechanical and chemical properties to be used in 
monitoring process. This Cu foil was irradiated simultaneously with the main target foils 
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and then analyzed with the same gamma ray spectrometer in a comparable geometry. Thus, 
the ratio (αexp) between the measured cross section values for the 63Cu(p,n)63Zn and 
63Cu(p,2n)62Zn nuclear reactions can be calculated using equation (1) (Piel, et al., 1992): 

 
 
 

63

62

6262

63 63

1
   

1

b

Zn

b
Zn

t

exp t

A e

A e

 

 


  

 
 (1) 

where, tb is the irradiation time, A62 and A63 are the measured decay activities for both 62Zn 
and 63Zn, respectively. By comparing the determined ratio which found to be (0.0118) with 
the ratios obtained from the recommended cross-section values by the IAEA (Tárkányi, et 
al., 2001) and plotted, in dotted line, as a function of the proton energy in Figure 4. The 
energy value of the accelerated protons was estimated to be Ep=39.4 ± 0.4 MeV.  
 

 

Fig. 4. The energy calibration for the Proton beam using the ┙exp ratio for σ62Zn and σ63Zn 

The measured Cu monitoring reactions were also used for beam intensity calculations, using 
the reverse relation to the well-known reaction cross section values. The charge collected in 
the Faraday cup was registered, from which the average beam current was deduced. The 
two results generally agreed within 10%. The uncertainty of the proton energy along the 
stack was checked by inserting Al and Cu monitor foils into different points of the stack 
then by comparing the measured excitation functions for natAl(p,x)22,24Na and 
natCu(p,x)62,63,65Zn monitor reactions with their recommended values (Tárkányi, et al., 2001), 
as shown in Figure 5. The individual uncertainties of the contributing reactions were taken 
into account considering the cumulative effects. The total uncertainty for each energy point 
depends on the irradiation circumstances and the position of each foil in the stack. These are 
the uncertainties of the target homogeneity and thickness, the incident beam energy and the 
beam straggling. Typical uncertainty in the energy was (±0.3 MeV) at the beginning of the 
stack and (±1.2 MeV) at the end. Furthermore, the very good agreement with the 
recommended values for the measured cross-sections of the studied monitoring reactions 
confirms the reliability of our experimental setup. 

www.intechopen.com



Medical Radioisotopes Production: A Comprehensive Cross-Section Study for the  
Production of Mo and Tc Radioisotopes Via Proton Induced Nuclear Reactions on 

nat
Mo 13 

 
 

 
 

Fig. 5. Excitation functions of the monitor reactions compared with the recommended cross-
sections by the IAEA. 

2.5 Radioactivity measurements 

The radioactivity of the residual nuclei in the activated foils was measured nondestructively 

using a HPGe ┛-ray detector with 70% efficiency relative to a (3"x3") NaI detector, and 

energy resolution of 2.2 keV for the 1.332 MeV ┛-line of the 60Co standard source, a peak to 

Compton ratio of 58: l. The detector absolute efficiencies for various source-detector 

distances and photon energies were determined experimentally by using a selected set of ┛-

ray standard sources (60Co, 137Cs, 133Ba and 152Eu), of known activities, to cover the whole 

energy range of the studied ┛-rays. The detector-sample distance was kept large enough to 

ensure the point source geometry and to keep the dead time within 8% or less. In addition to 

the main characteristic ┛-lines for each studied radioisotope, some other weaker ┛-lines were 

also considered to minimize the relative errors due to counting statistics, wherever possible. 

In the cases of the longer-lived radionuclides, activity measurements were carried out after 

sufficient cooling time, which is enough for the complete decay of most of the undesired 

short-lived isotopes, to avoid any possible interference of nearly equal energies ┛-lines. The 

stack was dismantled and each foil was counted 2-3 times after different cooling times 

following the end of bombardment EOB to avoid disturbance by overlapping ┛-lines from 

undesired sources and to evaluate accurately the cross-sections for cumulative formation of 

the corresponding longer-lived daughter radionuclide. 

Figure 6 presents an example of the calibrated measured ┛-ray spectrum with identified ┛-

lines covering the energy range up to 1350 keV. Table 6 shows the contributing reactions 

and the decay data of all the investigated radionuclides, which were taken from the Table of 

Isotopes (Firestone, 1998 and T-16, Nuclear Physics Group, LANL 1997). 
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Fig. 6. A calibrated Gamma ray spectrum with identified ┛-lines 

 

Nuclide 
Half 
life 

Principal 
contributing  

reactions

Q-value 
MeV 

Decay mode 
Eγ 

keV 
Iγ % 

99Mo
 2.75 d 

100Mo(p,pn) 
99Nb→decay 

-8.30 
-11.14 

┚- (100) 
140.51 
181.07 
739.5 

89.43 
5.99 
12.13 

94gTc
 4.88 h 

94Mo(p,n)
95Mo(p,2n) 
96Mo(p,3n) 

-5.03
-12.41 
-21.56 

EC (87.94%) 
┚+ (11.71%) 

702.63 

849.92 

871.08 

99.6 
95.7 
100 

95gTc
 20 h 

95Mo(p,n)
96Mo(p,2n) 
97Mo(p,3n) 
96mTc→ decay 

-02.47 
-11.63 
-18.45 

EC (100%) 
765.79 
947.67 
1073.71 

93.82 
01.95 
03.74 

96gTc
 4.28 d 

96Mo(p,n)
97Mo(p,2n) 
98Mo(p,3n) 

-03.76
-10.58 
-19.22 

EC (100%) 

778.22 
812.58 
849.92 

99.76 
82.0 
98.0 

96mTc
 51.50 

min 

96Mo(p,n) 
97Mo(p,2n) 
98Mo(p,3n) 

-03.76 
-10.58 
-19.22 

IT (98%)
34.28 100.0 

EC (2%) 
778.22 
1200 

01.90 
01.08 

99mTc
 6.01 h 

100Mo(p,2n)
99Mo→decay 

-7.60 
 

IT +┚- (100) 140.51 89.06 

Table 6. The contributing reactions and the decay data of the investigated radioisotopes 
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2.5.1 Separation of interfered γ-lines 

Some investigated radionuclides emit ┛-rays that have very close energies, which were 

difficult to be separated using the HPGe spectrometer.  

The individual activities of those overlapped ┛-rays were analyzed using the difference in 
half-lives of the contributing nuclides by plotting the ┛-ray emission rate as a function of 
time. Figure 7 shows the radioactive decay curve for the 140.5 keV ┛-peak which resulted 
from the decay of the directly produced 99Mo (65.94 h, 140.51 keV), the directly and 
indirectly produced 99mTc (6.01 h, 140.51 keV), and 90Nb (14.6 h, 141.2 keV). The 
radionuclides decay completely in the order of their half-lives, 99Mo the longest-lived 
nuclide is the last to decay. After more than 14 days, the remaining activity was due to 
decay of the daughter nuclide 99mTc in transient equilibrium with the parent 99Mo 
radionuclide. The activities of the radionuclide; 99Mo(A2) →99mTc(A1) at the end of 
bombardment (EOB) were estimated by using equation (2) (Uddin, et al., 2004):   

      
1 2 2 1

1( )
1 2 1 2

( )

exp [exp exp ]
EOB

c c c

A
A

t t t
   


     

 (2) 

where tc is the respective cooling time, ┣1 and ┣2 are the decay constants of 99Mo and 99mTc, 

respectively, and A1(EOB) is the activity of 99Mo at the EOB. To separate the activities after the 

EOB of 90Nb(A3(EOB)) and 99mTc(A4(EOB)), we used the following  equation (3): 

    3 4 3( ) 3 4( ) 4exp expEOB c EOB cA A t A t      (3) 

 

 

Fig. 7. Resolving the 140 keV ┛-line which produced from three different radioisotopes 99Mo, 
99mTc and 90Nb  

The daughter 99mTc activity decreases from the maximum at a constant rate, which 

depends on the decay rate of 99M. Then the directly produced 99mTc completely decayed 

out before the measurement. The measured activity for the 140.5 keV ┛-line was the sum 

of the ┛-line from the daughter 99mTc and from 90Nb. We deduced the activities of 140.5 
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and 141.2keV ┛-lines from the independent ┛-lines of 99Mo and 90Nb, respectively; an 

excellent agreement was obtained when compared with the results of radioactive decay 

curve.  

2.6 Cross section calculations and uncertainty  

The reaction cross sections for the nuclear reactions natMo(p,x) were calculated using the 

activation formula as in equation 4 considering the decay data and rates of the radioactive 

isotopes produced, the detector absolute efficiency, and the measured beam intensity (Helus 

& Colombetti, 1980).  

 



  b c m

γ
-λ t -λ t λ t

A abs

M Z e λ T
σ   

I x N  f   I ε  (1 - e ) e (1 e )
 (4) 

Whereas; M is the target molecular weight, Ze is the projectile charge, ┣ is the decay 

constant, Tγ is the net area under each ┛-peak, Iγ is the gamma line intensity, Δx is the 

thickness of each target foil, NA is the Avogadro’s number, f is the abundance of the isotope, 

ρ is the target density, I is the beam intensity, εabs is the detector efficiency corresponding to 

each ┛-line energy, tc is the cooling time and tm is the measuring time.  

The total experimental error was calculated by combining the individual errors as a square 

root of the sum of squares of the contributing relative errors, which are the lack of precision 

in: measuring the absolute detector efficiency of 3-6%, the calculation of the area under the 

photoelectric peak 1-4%, measuring the current intensity 4-7%, the calculation of irradiation 

time 2 %, determining the foil thicknesses and composition 1-4% and the nuclear decay data 

of 3%. The total experimental errors were obtained to be (8-12%).  The total uncertainty in 

each energy point depends on the irradiation circumstances and the position of the foil in 

the stack. 

3. Nuclear model calculations 

All the measured cross sections over the whole energy range were simulated using TALYS 

(Koning, et al., 2008) code. A short description for the codes is given in the following: 

3.1 TALYS code 

We calculated the independent formation cross sections for both the ground and/or the 

isomeric states by using the TALYS code, which is a computer program that integrates all 

types of nuclear reactions in the energy range of 1 keV-200 MeV. TALYS incorporates 

modern nuclear models for the optical model, level densities, direct reactions, compound 

reactions, pre-equilibrium reactions, fission reactions, and a large nuclear structure database 

(Koning, et al., 2008). The database of this code is derived from the (Reference Input 

Parameter Library, http://www-nds.iaea.org/ripl2/). The pre-equilibrium particle 

emission is described using the two-component exciton model. The model implements new 

expressions for internal transition rates and new parameterization of the average squared 

matrix element for the residual interaction obtained using the optical model potential. The 

phenomenological model is used for the description of the pre-equilibrium complex particle 

emission. The contribution of direct processes in inelastic scattering is calculated using the 
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ECIS-94 code (Raynal, 1994) incorporated in TALYS (Raynal, 1994). The equilibrium particle 

emission is described using the Hauser-Feshbach model. The default optical model 

potentials (OMP) which used in TALYS are the local and the global parameterizations for 

neutrons and protons. These parameters can be adjusted in some cases by the user. The 

present results of all the calculated excitation functions were evaluated using the default 

values of the code. 

4. Result and discussion 

The experimentally constructed excitation functions for the main investigated 

natMo(p,x)99Mo,94g,95g,96(m+g),99mTc nuclear reactions are shown in Figures 8-12 together with 
the results of the theoretical calculation using TALYS code and the previously published 
data. The numerical values of the present experimental cross-sections and their estimated 
uncertainties are presented in Table 7. 
  

Proton 
Energy 
MeV 

Reaction Cross-section (mb) 

natMo(p,xn)99M
o 

natMo(p,xn)94g

Tc 

natMo(p,xn)95g

Tc 

natMo(p,xn)96(

m+g)Tc 

natMo(p,xn)99

mTc 

39 ± 0.3 159 ± 10 62 ± 6 113 ± 11 73 ± 7 17 ± 2 

35 ± 0.3 166 ± 11 75 ± 7 109 ± 11 122 ± 12 22 ± 2 

30 ± 0.4 165 ± 11 77 ± 6 84 ± 9 184 ± 11 20 ± 2 

27 ± 0.4 159 ± 10 75 ± 6 90 ± 9 192 ± 11 28 ± 2 

25 ± 0.4 141 ± 10 77 ± 7 120 ± 11 173 ± 12 35 ± 3 

22 ± 0.5 122 ± 9 72 ± 7 158 ± 12 115 ± 12 84  ± 8 

20 ± 0.5 103 ± 9 69 ± 7 146 ± 12 100 ± 10 120 ± 10 

20 ± 0.5 95 ± 9 74 ± 7 140 ± 11 97 ± 9 152 ± 11 

18 ± 0.5 79 ± 8 70 ± 7 122 ± 11 100 ± 9 182 ± 12 

18 ± 0.5 71 ± 8 72 ± 7 120 ± 11 95 ± 9 202 ± 15 

17 ± 0.6 51 ± 5 73 ± 7 115 ± 11 110 ± 9 220 ± 18 

15 ± 0.6 19 ± 10 60 ± 6 120 ± 11 127 ± 10 222 ± 16 

13 ± 0.6 10 ± 1 43 ± 4 106 ± 10 153 ± 13 196 ± 16 

12 ± 0.7 4 ± 1 28 ± 2 84 ± 8 165 ± 11 170 ± 14 

10 ± 0.7 2 ± 0.3 9 ± 0.7 77 ± 8 125 ± 10 116 ± 11 

8 ± 0.8 66 ± 7 89 ± 8 6 ± 0.9 

6 ± 0.9  53 ± 6  

Table 7. Measured cross-sections for the proton-induced nuclear reactions on natMo. 
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4.1 Excitation functions  
4.1.1 

nat
Mo(p,xn)

99
Mo  

99Mo is produced by proton activation on natMo target via the contribution of two reaction 
channels 100Mo(p,pn)99Mo (Q= 8.3 MeV) and 100Mo(p,2p)99Nb (Q= 11.14 MeV) through the ┚- 
decay of the parent isotope 99Nb(15 s). The highest cross-section value of about 160 mb 
corresponds to Ep= 30 MeV. 
A comparison between our measured cross-sections and the previously reported data 
together with the theoretical calculations using TALYS code is presented in Figure 8. 
(Takács, et al., 2003) reported cross-section data up to 37 MeV and (Levkovskij, 1991) 
reported up to 29 MeV for 99Mo production on the enriched 100Mo isotope. Our measured 
values are consistent with the data presented by (Uddin, et al., 2004). The data reported by 
(Scholten, et al.,1999) are consist with our data in energy range lower than 22 MeV, although 
his results at the higher energies are scattered. Our results showed agreement with (Takács, 
et al., 2003) in low energy region. The data presented by (Levkovskij, 1991) are about 25% 
higher than our data. (Lagunas-solar, et al., 1991) reported numerical cross-section data that 
are much lower than our measured data and the other published data as well in the energy 
region above 20 MeV. A good agreement exists between the measured cross-sections and 
the TALYS code calculations within the experimental error and that fact confirms the 
reliability of our measured data.  
 

 

Fig. 8. Excitation function of the natMo(p,x) reaction (full red dots with vertical and 
horizontal error bars) compared to some previously published results and the TALYS code 
calculations (curve). 

4.1.2 
nat

Mo(p,xn)
94g

Tc  
94Tc has two isomeric states, metastable state 94mTc (T½ = 52 min, 2+) and ground state (T½ = 
4.86 h, 7+). We studied the excitation function for the ground state only due to the relatively 
short half-life of the metastable state. The contribution of the isomeric transition (IT< 0.1) for 
94mTc is small enough to be neglected. Therefore, we can study each state separately by 
eliminating the interfering gamma rays from the measurements, such as 849.92 keV and 
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871.08 keV as listed in Table 6. Mainly we used the 702.63 keV ┛-line, which has no 
interference with any other ┛-lines from any other produced isotopes  in a cooling time of 
about 5 hours, to determine the cross section for 94gTc production.  
The present experimental excitation function for the reaction natMo(p,xn)94gTc is presented in 

Figure 9 together with the previously published results and the calculated cross sections by 

the used nuclear model code TALYS.  

A good agreement is found between our measured cross sections and the ones reported by 

(Bonardi, et al., 2002 and Uddin, et al., 2004) over the entire energy range. There is a 

remarkable difference between the present results and the reported data by (Khandaker, et 

al., 2007) especially for the energies lower than 20 MeV and above 30 MeV. The measured 

cross sections by (Kormali, et al., 1976) show about 40% lower values than our data in the 

energy range from 11-20 MeV. The TALYS code calculation is about 50% higher than our 

measured data and higher than all the previously reported data sets. 

 

 

Fig. 9. Excitation function of the natMo(p,x) reaction (full red dots) compared to some 
previously published results and the TALYS code calculations (curve). 

4.1.3 
nat

Mo(p,xn)
95g

Tc  
95Tc is formed in two different states:  the longer lived isomeric state 95mTc (T½ = 61 d, 1/2-) 
and the shorter lived ground state 95gTc (T½ = 20 h, 9/2+). In this study, we report only the 
measured cross sections for 95gTc due to the difficulty in measuring the interfering 
characteristic ┛-rays for 95mTc as shown in Table 6. The 95gTc activity measurement was 
based on detecting the main ┛-line at 765.79 keV. A comparison of the present measured 
data with some previously reported data and the TALYS code calculations is shown in 
Figure 10.  
The cross section is only measurable at 8 MeV, then increases gradually due to the 95Mo 
(p,n) reaction. The contribution of the 96Mo (p,2n) reaction appears as a little plateau starting 
at about 12 MeV, while the 97Mo (p,3n) reaction contribution starts at about 20 MeV, creating 
another small peak. There is a good agreement between our experimental excitation function 
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and the previously published data by (Bonardi, et al., 2002 and Khandaker, et al., 2007) within 
the experimental error, while the earlier presented study by (Khandaker, et al., 2006) shows 
35% higher value than our experimental data at energies above 26 MeV.  However, the data 
reported by (Birattari, et al., 2002) shows higher cross-section values in the proton energy 
range > 10 MeV. The presented data by (Uddin, et al., 2004) shows inconsistency with most of 
the other experimental data, , especially for the point at about 22 MeV.  
The TALYS code calculation results are in good consistency with our experimental data 

within the experimental error, but there exists a small drop in the measured cross section 

values in the higher values of the energy range.  

 

 
 

Fig. 10. Excitation function of the natMo(p,x)95gTc reaction compared to some previously 
published results and the TALYS code calculations. 

4.1.4 
nat

Mo(p,xn)
96(m+g)

Tc  
96Tc is formed in two energy states: 96mTc (T½ = 51.5 min, 4+) that decays by 98% isomeric 

transition to the ground state 96gTc (T½ = 4.28 d, 7+). In this study we measured the cross-

section of 96gTc using the main characteristic ┛-line 778.2 keV, while it was not possible to 

measure the characteristic isomeric transition 34.28 keV of the metastable state due to the 

intensive interfering of the X-rays. According to the short half-life and the high IT decay rate 

of the metastable state, we can consider the measured cross section as the total cross section 

of 96(m+g)Tc without measuring the metastable state independently. Figure 11 illustrates a 

comparison between our measured cross sections and the available published data together 

with the TALYS code calculations. Some findings can be summarized from this figure as 

follows:  

 The first part of the curve is due to 96Mo(p,n) reaction. It starts to increase rapidly to 
form a peak at 12 MeV. Then it decreases slowly and forms a plateau in the range 16-21 
MeV due to the contribution of the 97Mo(p,2n) and 98Mo(p,3n) reactions which start at 
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11 and 19 MeV, respectively. The rapid increase in the cross-section values at energies 
higher than 22 MeV indicates the increasing contribution of the (p,3n) reaction. 

 Very good agreement is found in the energy range above 9MeV between the present 

data and those reported by (Takács, et al., 2002; Uddin, et al., 2004 & Khndaker, et al 

2006,2007). 

 The results by (Bonardi, et al., 2002) overestimate the cross-section value in the energy 

range < 10 and >26 MeV. 

 The data by (Khandaker, et al., 2007) are somewhat low in the proton energy range 

below 10 MeV.   

An overall good agreement is found between the present experimental excitation function 
for 96(m+g)Tc formation and the calculated theoretical results by TALYS code and the 
recommended data (Takács, et al., 2002), within the experimental error. 
 

 

Fig. 11. Excitation function of the natMo(p,x)96(m+g)Tc reaction compared to some previously 
published results and the TALYS code calculations. 

4.1.5 
nat

Mo(p,xn)
99m

Tc  

Three reactions contribute to the production of 99mTc by direct way are 98Mo(p,┛), 
100Mo(p,2n), and indirect way by 100Mo(p,pn). Possibly, the highest contribution is from the 
100Mo(p,2n)99mTc reaction (on the 9.63% 100Mo present in the highly chemically pure Mo 
sample). Activity of 99mTc was measured in this work by detecting the gamma peak at 
energy 140.5 MeV after the resolution of this peak as described before. The measured 
excitation function is compared with some earlier published data and the TALYS code 
calculations in Figurer 12. The data of (Takács, et al. 2003) and ( Kandaker, et al. 2007) fit 
nicely our measured data specially in the low energy part up to 20 MeV. At higher energies 
(Kandakar, et al. 2007) data clearly over estimate our results. The results of (Challan, et al. 
2007) agree with our results except the last two points. The cross section data for (Scholtan, 
et al. 1999) are clearly lower than our values over the hall energy range. The TALYS 
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calculations over estimate the present results, especially in the energy range lower than 18 
MeV , while they fit, within the experimental errors in the higher range. 
 

 

Fig. 12. Excitation function of the natMo(p,x)99mTc reaction compared to some previously 
published results and the TALYS code calculations. 

4.2 Integral yield calculations 

The integral yields, at the end of bombardment, for the production of the different isotopes 

were derived using the measured excitation functions for the production of these 

radioisotopes. The method was done by assuming the thick target as dividend to several 

thin targets each of an equivalent thickness of about 0.5 MeV. The cross section at each thin 

target is assumed constant, because of the small energy interval through the target. The 

number of target atoms/cm2 was calculated using the target thickness, which reduce the 

proton energy by 0.5 MeV. The differential yield produced in each thin target was calculated 

using the following equation (5): 

  30( )   . . ( ).10 . 1
.

bt
MBq

Y E N P E e
A h

 
    

 (5) 

Whereas, 購博岫継岻 (mb) is the average cross section at a specific energy; N is the number of 
target atoms/cm2; λ is the decay constant for the produced isotopes; P is the number of 
incident protons/sec for (1 ┤A) and the irradiation time (tb= 1 h). We then calculated the 
integral target yield by summing up the differential yields. 
Figure 13 represents the values of the integral target yield for the studied reactions as a 
function of the proton energies. Obviously, the yields of the investigated radioisotopes 
increase with the proton energy and start to saturate at energy of about 30 MeV. The nearly 
saturation values for 99Mo, 94gTc, 95gTc, 96(m+g)Tc, and 99mTc are equal to 110, 600, 310, 90 and 
910 MBq/┤A.h, respectively.  
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For the production of 99mTc via cyclotron, it is highly recommended to use an enriched 
target of 100Mo to exclude all the other impurities by using the indirect 100Mo(p,pn)99Mo and  
the direct 100Mo(p,2n)99mTc nuclear reactions. From the present data we conclude that the 
optimum energy range for the production of 99mTc directly and indirectly using protons is 
Ep= 35-18 MeV, the integral target yield amounting to to 412 MBq/┤A.h to 1000 MBq/┤A.h 
at saturation with respect to the half lives of both 99Mo and 99mTc.  
 

 

Fig. 13. Integral Yields for the natMo(p,x)99Mo,94g,95g,96(m+g),99mTc nuclear reactions calculated 
from the excitation functions measured in this work. 

5. Conclusion 

99mTc radioisotope is a very important medical radioisotope for diagnostic tests. In this work 
an alternative root of producing this isotope, either directly or through the generator 99Mo 
(99mTc ) , namely using cyclotrons, is introduced and discussed. The excitation functions for 
the different proton-induced nuclear reactions on natMo target are measured and compared 
with some previously measured data. This study aims to resolve some contradictions 
between the existing data, and to give a reliable data set for the production of 99mTc and 
some other isotopes of importance in nuclear medicine beside some impurities. Monitoring 
reactions on Al and Cu targets are also measured and compared with the recommended 
IAEA data sets, in order to give high degree of consistency to our results. The present 
excitation functions confirm some previously measured sets, while contradict with others. 
Theoretical code calculations using TALYS code are performed and show a good 
consistency with the measured cross section values. The code calculations can be used for 
cross section estimations, when not enough experimental data exist. Furthermore, the 
integral or thick target yields are estimated based on the measured excitation functions for 
all the investigated reactions. Finally, it is well known that for medical uses, enriched targets 
have to be used in the production to avoid the secondary produced unwanted impurities. 
While the studies on natural targets, gives an idea about the suitable energy range for 
maximum production of the wanted isotope and minimum of the impurities. 
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