47 research outputs found

    Algorithms and almost tight results for 3-colorability of small diameter graphs.

    Get PDF
    The 3-coloring problem is well known to be NP-complete. It is also well known that it remains NP-complete when the input is restricted to graphs with diameter 4. Moreover, assuming the Exponential Time Hypothesis (ETH), 3-coloring cannot be solved in time 2o(n) on graphs with n vertices and diameter at most 4. In spite of extensive studies of the 3-coloring problem with respect to several basic parameters, the complexity status of this problem on graphs with small diameter, i.e. with diameter at most 2, or at most 3, has been an open problem. In this paper we investigate graphs with small diameter. For graphs with diameter at most 2, we provide the first subexponential algorithm for 3-coloring, with complexity 2O(nlogn√). Furthermore we extend the notion of an articulation vertex to that of an articulation neighborhood, and we provide a polynomial algorithm for 3-coloring on graphs with diameter 2 that have at least one articulation neighborhood. For graphs with diameter at most 3, we establish the complexity of 3-coloring by proving for every ε∈[0,1) that 3-coloring is NP-complete on triangle-free graphs of diameter 3 and radius 2 with n vertices and minimum degree δ=Θ(nε). Moreover, assuming ETH, we use three different amplification techniques of our hardness results, in order to obtain for every ε∈[0,1) subexponential asymptotic lower bounds for the complexity of 3-coloring on triangle-free graphs with diameter 3 and minimum degree δ=Θ(nε). Finally, we provide a 3-coloring algorithm with running time 2O(min{δΔ, nδlogδ}) for arbitrary graphs with diameter 3, where n is the number of vertices and δ (resp. Δ) is the minimum (resp. maximum) degree of the input graph. To the best of our knowledge, this is the first subexponential algorithm for graphs with δ=ω(1) and for graphs with δ=O(1) and Δ=o(n). Due to the above lower bounds of the complexity of 3-coloring, the running time of this algorithm is asymptotically almost tight when the minimum degree of the input graph is δ=Θ(nε), where ε∈[12,1), as its time complexity is 2O(nδlogδ)=2O(n1−εlogn) and the corresponding lower bound states that there is no 2o(n1−ε)-time algorithm

    On the independence number and Hamiltonicity of uniform random intersection graphs

    Get PDF
    AbstractIn the uniform random intersection graphs model, denoted by Gn,m,λ, to each vertex v we assign exactly λ randomly chosen labels of some label set M of m labels and we connect every pair of vertices that has at least one label in common. In this model, we estimate the independence number α(Gn,m,λ), for the wide range m=⌊nα⌋,α<1 and λ=O(m1/4). We also prove the Hamiltonicity of this model by an interesting combinatorial construction. Finally, we give a brief note concerning the independence number of Gn,m,p random intersection graphs, in which each vertex chooses labels with probability p

    The temporal explorer who returns to the base

    Get PDF
    We study here the problem of exploring a temporal graph when the underlying graph is a star. The aim of the exploration problem in a temporal star is finding a temporal walk which starts and finishes at the center of the star, and visits all leaves. We present a systematic study of the computational complexity of this problem, depending on the number k of time points where each edge can be present in the graph. We distinguish between the decision version StarExp(k), asking whether a complete exploration exists, and the maximization version MaxStarExp(k), asking for an exploratkion of the greatest possible number of edges. We fully characterize MaxStarExp(k) in terms of complexity. We also partially characterize StarExp(k), showing that it is in P for k 5 . Finally, we partially characterize classes of “random” temporal stars which are, asymptotically almost surely, yes-instances and no-instances for StarExp(k)

    Temporal vertex cover with a sliding time window.

    Get PDF
    Modern, inherently dynamic systems are usually characterized by a network structure which is subject to discrete changes over time. Given a static underlying graph, a temporal graph can be represented via an assignment of a set of integer time-labels to every edge, indicating the discrete time steps when this edge is active. While most of the recent theoretical research on temporal graphs focused on temporal paths and other “path-related” temporal notions, only few attempts have been made to investigate “non-path” temporal problems. In this paper we introduce and study two natural temporal extensions of the classical problem VERTEX COVER. We present a thorough investigation of the computational complexity and approximability of these two temporal covering problems. We provide strong hardness results, complemented by approximation and exact algorithms. Some of our algorithms are polynomial-time, while others are asymptotically almost optimal under the Exponential Time Hypothesis (ETH) and other plausible complexity assumptions

    Ephemeral networks with random availability of links: diameter and connectivity

    Get PDF
    In this work we consider temporal networks, the links of which are available only at random times (randomly available temporal networks). Our networks are {\em ephemeral}: their links appear sporadically, only at certain times, within a given maximum time (lifetime of the net). More specifically, our temporal networks notion concerns networks, whose edges (arcs) are assigned one or more random discrete-time labels drawn from a set of natural numbers. The labels of an edge indicate the discrete moments in time at which the edge is available. In such networks, information (e.g., messages) have to follow temporal paths, i.e., paths, the edges of which are assigned a strictly increasing sequence of labels. We first examine a very hostile network: a clique, each edge of which is known to be available only one random time in the time period {1,2, ..., n} (n is the number of vertices). How fast can a vertex send a message to all other vertices in such a network? To answer this, we define the notion of the Temporal Diameter for the random temporal clique and prove that it is Θ(log n) with high probability and in expectation. In fact, we show that information dissemination is very fast with high probability even in this hostile network with regard to availability. This result is similar to the results for the random phone-call model. Our model, though, is weaker. Our availability assumptions are different and randomness is provided only by the input. We show here that the temporal diameter of the clique is crucially affected by the clique's lifetime, a, e.g., when a is asymptotically larger than the number of vertices, n, then the temporal diameter must be Ω(a/nlog n ). We, then, consider the least number, r, of random points in time at which an edge is available, in order to guarantee at least a temporal path between any pair of vertices of the network (notice that the clique is the only network for which just one instance of availability per edge, even non-random, suffices for this). We show that r is Ω(log n) even for some networks of diameter 2. Finally, we compare this cost to an (optimal) deterministic allocation of labels of availability that guarantees a temporal path between any pair of vertices. For this reason, we introduce the notion of the Price of Randomness and we show an upper bound for general networks

    Determining Majority in Networks with Local Interactions and Very Small Local Memory

    Get PDF
    We study here the problem of determining the majority type in an arbitrary connected network, each vertex of which has initially two possible types (states). The vertices may have a few additional possible states and can interact in pairs only if they share an edge. Any (population) protocol is required to stabilize in the initial majority, i.e. its output function must interpret the local state of each vertex so that each vertex outputs the initial majority type. We first provide a protocol with 4 states per vertex that always computes the initial majority value, under any fair scheduler. Under the uniform probabilistic scheduler of pairwise interactions, we prove that our protocol stabilizes in expected polynomial time for any network and is quite fast on the clique. As we prove, this protocol is optimal, in the sense that there does not exist any population protocol that always computes majority with fewer than 4 states per vertex. However this does not rule out the existence of a protocol with 3 states per vertex that is correct with high probability (whp). To this end, we examine an elegant and very natural majority protocol with 3 states per vertex, introduced in [2] where its performance has been analyzed for the clique graph. In particular, it determines the correct initial majority type in the clique very fast and whp under the uniform probabilistic scheduler. We study the performance of this protocol in arbitrary networks. We prove that, when the two initial states are put uniformly at random on the vertices, the protocol of [2] converges to the initial majority with probability higher than the probability of converging to the initial minority. In contrast, we present an infinite family of graphs, on which the protocol of [2] can fail, i.e. it can converge to the initial minority type whp, even when the difference between the initial majority and the initial minority is n − Θ(ln n). We also present another infinite family of graphs in which the protocol of [2] takes an expected exponential time to converge. These two negative results build upon a very positive result concerning the robustness of the protocol of [2] on the clique, namely that if the initial minority is at most n7, the protocol fails with exponentially small probability. Surprisingly, the resistance of the clique to failure causes the failure in general graphs. Our techniques use new domination and coupling arguments for suitably defined processes whose dynamics capture the antagonism between the states involved

    Exact and approximate algorithms for computing a second Hamiltonian cycle.

    Get PDF
    A classic result by Stockmeyer [Stockmeyer, 1974] gives a non-elementary lower bound to the emptiness problem for star-free generalized regular expressions. This result is intimately connected to the satisfiability problem for interval temporal logic, notably for formulas that make use of the so-called chop operator. Such an operator can indeed be interpreted as the inverse of the concatenation operation on regular languages, and this correspondence enables reductions between non-emptiness of star-free generalized regular expressions and satisfiability of formulas of the interval temporal logic of the chop operator under the homogeneity assumption [Halpern et al., 1983]. In this paper, we study the complexity of the satisfiability problem for a suitable weakening of the chop interval temporal logic, that can be equivalently viewed as a fragment of Halpern and Shoham interval logic featuring the operators B, for "begins", corresponding to the prefix relation on pairs of intervals, and D, for "during", corresponding to the infix relation. The homogeneous models of the considered logic naturally correspond to languages defined by restricted forms of regular expressions, that use union, complementation, and the inverses of the prefix and infix relations

    Stably computing order statistics with arithmetic population protocols.

    Get PDF
    In this paper we initiate the study of populations of agents with very limited capabilities that are globally able to compute order statistics of their arithmetic input values via pair-wise meetings. To this extent, we introduce the Arithmetic Population Protocol (APP) model, embarking from the well known Population Protocol (PP) model and inspired by two recent papers in which states are treated as integer numbers. In the APP model, every agent has a state from a set Q of states, as well as a fixed number of registers (independent of the size of the population), each of which can store an element from a totally ordered set S of samples. Whenever two agents interact with each other, they update their states and the values stored in their registers according to a joint transition function. This transition function is also restricted; it only allows (a) comparisons and (b) copy / paste operations for the sample values that are stored in the registers of the two interacting agents. Agents can only meet in pairs via a fair scheduler and are required to eventually converge to the same output value of the function that the protocol globally and stably computes. We present two different APPs for stably computing the median of the input values, initially stored on the agents of the population. Our first APP, in which every agent has 3 registers and no states, stably computes (with probability 1) the median under any fair scheduler in any strongly connected directed (or connected undirected) interaction graph. Under the probabilistic scheduler, we show that our protocol stably computes the median in O(n^6) number of interactions in a connected undirected interaction graph of nn agents. Our second APP, in which every agent has 2 registers and O(n^2 log{n}) states, computes to the correct median of the input with high probability in O(n^3 log{n}) interactions, assuming the probabilistic scheduler and the complete interaction graph. Finally we present a third APP which, for any k, stably computes the k-th smallest element of the input of the population under any fair scheduler and in any strongly connected directed (or connected undirected) interaction graph. In this APP every agent has 2 registers and n states. Upon convergence every agent has a different state; all these states provide a total ordering of the agents with respect to their input values

    Stably computing order statistics with arithmetic population protocols

    Get PDF
    In this paper we initiate the study of populations of agents with very limited capabilities that are globally able to compute order statistics of their arithmetic input values via pair-wise meetings. To this extent, we introduce the Arithmetic Population Protocol (APP) model, embarking from the well known Population Protocol (PP) model and inspired by two recent papers in which states are treated as integer numbers. In the APP model, every agent has a state from a set Q of states, as well as a fixed number of registers (independent of the size of the population), each of which can store an element from a totally ordered set S of samples. Whenever two agents interact with each other, they update their states and the values stored in their registers according to a joint transition function. This transition function is also restricted; it only allows (a) comparisons and (b) copy / paste operations for the sample values that are stored in the registers of the two interacting agents. Agents can only meet in pairs via a fair scheduler and are required to eventually converge to the same output value of the function that the protocol globally and stably computes. We present two different APPs for stably computing the median of the input values, initially stored on the agents of the population. Our first APP, in which every agent has 3 registers and no states, stably computes (with probability 1) the median under any fair scheduler in any strongly connected directed (or connected undirected) interaction graph. Under the probabilistic scheduler, we show that our protocol stably computes the median in O(n^6) number of interactions in a connected undirected interaction graph of nn agents. Our second APP, in which every agent has 2 registers and O(n^2 log{n}) states, computes to the correct median of the input with high probability in O(n^3 log{n}) interactions, assuming the probabilistic scheduler and the complete interaction graph. Finally we present a third APP which, for any k, stably computes the k-th smallest element of the input of the population under any fair scheduler and in any strongly connected directed (or connected undirected) interaction graph. In this APP every agent has 2 registers and n states. Upon convergence every agent has a different state; all these states provide a total ordering of the agents with respect to their input values

    Approximating Fixation Probabilities in the Generalized Moran Process

    Get PDF
    We consider the Moran process, as generalized by Lieberman et al. (Nature 433:312–316, 2005). A population resides on the vertices of a finite, connected, undirected graph and, at each time step, an individual is chosen at random with probability proportional to its assigned “fitness” value. It reproduces, placing a copy of itself on a neighbouring vertex chosen uniformly at random, replacing the individual that was there. The initial population consists of a single mutant of fitness r>0 placed uniformly at random, with every other vertex occupied by an individual of fitness 1. The main quantities of interest are the probabilities that the descendants of the initial mutant come to occupy the whole graph (fixation) and that they die out (extinction); almost surely, these are the only possibilities. In general, exact computation of these quantities by standard Markov chain techniques requires solving a system of linear equations of size exponential in the order of the graph so is not feasible. We show that, with high probability, the number of steps needed to reach fixation or extinction is bounded by a polynomial in the number of vertices in the graph. This bound allows us to construct fully polynomial randomized approximation schemes (FPRAS) for the probability of fixation (when r≥1) and of extinction (for all r>0)
    corecore