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a b s t r a c t

In the uniform random intersection graphs model, denoted by Gn,m,λ, to each vertex v
we assign exactly λ randomly chosen labels of some label set M of m labels and we
connect every pair of vertices that has at least one label in common. In this model, we
estimate the independence number α(Gn,m,λ), for the wide range m = ⌊nα

⌋, α < 1 and
λ = O(m1/4).We also prove theHamiltonicity of thismodel by an interesting combinatorial
construction. Finally, we give a brief note concerning the independence number of Gn,m,p
random intersection graphs, in which each vertex chooses labels with probability p.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Random intersection graphs Gn,m,p were introduced by Karoński et al. [9] and Singer-Cohen [14]. In such graphs, each
one of m labels is chosen independently with probability p by each one of n vertices, and there are edges between any
vertices with overlaps in the labels chosen. Fill, Sheinerman and Singer-Cohen in [7] proved that the Gn,m,p becomes
statistically equivalent to an Erdős–Rényi random graph (in which every edge appears independently with some probability
p̂), when the number of labels m is quite large (in fact for m ≥ n6, but it was conjectured that the same holds for smaller
m). However, the two models seem to behave quite differently when the number of labels is less than the number of
vertices.

Godehardt and Jaworski [8] defined a different model called uniform random intersection graphs model Gn,m,λ. In this
model, to each of the n vertices of the graph, a random subset of λ elements of a universal set of m elements in total is
independently assigned. Two vertices u, v are then adjacent in the Gn,m,λ graph if and only if their assigned sets of elements
have at least one element in common. The Gn,m,λ seems to behave similarly to Gn,m,p when one can show concentration on
the number of labels chosen by a vertex in the latter (which can happen for quite large λ). However, notice that for small
values of λ such concentration results do not hold, and the statistical behavior of the twomodels is quite different. Themain
focus of this work is about Hamiltonicity and independent sets in the uniform random intersection graphsmodel Gn,m,λ. The
last section of the paper will give a brief note on the independence number of Gn,m,p.
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Importance and motivation. Random intersection graphs may be used to model several real-life applications
characterized by local interactions quite accurately (compared to the Gn,p̂ model where edges appear independently with
probability p̂). In particular, the Gn,p̂ model seems inappropriate for describing some real world networks (like sensor
and social networks) because it lacks certain features of those networks, such as a scale free degree distribution and
the emergence of local clusters. One of the underlying reasons for this mismatch is its independence of the edges, in
other words the missing transitivity that characterizes such networks: if vertices x and y exhibit a relationship of some
kind in a real world network and so do vertices y and z, then this suggests a connection between vertices x and z,
too.

For example, we consider the following scenario concerning efficient and secure communication in sensor networks:
The vertices in our model correspond to sensor devices that blindly choose a limited number of resources among a globally
available set of shared resources (such as communication channels, encryption keys etc.). Whenever two sensors select
at least one resource in common (e.g. a common communication channel, a common encryption key), a communication
link is implicitly established (represented by a graph edge); this gives rise to communication graphs that look like random
intersection graphs.

Random intersection graphs in general and in particular the uniform random intersection graphs model Gn,m,λ are
relevant to and capture quite nicely social networking. Indeed, a social network is a social structure made of nodes
(individuals or organizations) tied by one or more specific types of interdependency, such as values, visions, financial
exchange, friends, conflicts, web links etc. Social network analysis views social relationships in terms of nodes and ties.
Nodes are the individual actors within the networks and ties are the relationships between the actors.

Other applications may include oblivious resource sharing in a distributed setting, interactions of mobile agents
traversing the web, etc. In fact there are practical situations where each communication agent (e.g. a wireless node) gets
access only to some ports (statistically) out of a possible set of communication ports. When another agent also selects a
communication port, then a communication link is implicitly established and this gives rise to communication graphs that
look like random intersection graphs. Even epidemiological phenomena (like spread of disease) tend to be more accurately
captured by those ‘‘interaction-sensitive’’ random graph models.

Related work. Uniform random intersection graphs were first considered by Godehardt and Jaworski in [8], where they
focused on the distribution of the number of isolated vertices in Gn,m,λ, as well as the distribution of vertex degrees. The
vertex degree distribution of general random intersection graphs (where the choice of the label sets Sv is made according to
a general distribution)was studied independently by Blonzelis [3] andDeijfen andKets [5]. Connectivity and communication
security aspects of Gn,m,λ in various important settings is studied in [12,2].

The question of how close Gn,m,p and Gn,p are for various values ofm, p has been studied by Fill, Sheinerman and Singer-
Cohen in [7]. In [11], the authors investigate expansion properties of Gn,m,p and give tight bounds on the mixing and the
cover time of randomwalks on instances of the random intersection graphsmodel. Algorithms for finding large independent
sets in Gn,m,p were proposed in [10] (however, no attempt was made to see how close the independent sets given by those
algorithms are to optimal size). The authors of [6] find thresholds (that are optimal up to a constant factor) for the appearance
of Hamilton cycles in random intersection graphs. The efficient construction of Hamilton cycles in Gn,m,p is studied in [13].
Also, by using a sievemethod, Stark [15] gives exact formulas for the degree distribution of an arbitrary fixed vertex of Gn,m,p
for a quite wide range of the parameters of the model.

Our results. To the best of the authors’ knowledge, this is the first work were the independence number of Gn,m,λ is
analyzed. Throughout this paper we assume that the number of vertices n is large, i.e. n → ∞ (and the values of the rest of
the parameters of the models are defined in terms of nwhen needed). Our contribution in this work is the following:

(a) We show that when the number of vertices n is at least (1 + ϵ)
m

λ


ln
m

λ


, for some constant ϵ > 0 arbitrarily small,

then Gn,m,λ, with λ ≥ 2, has a Hamilton cycle with high probability (whp),1 i.e. a very small constant number of labels
suffices to yield Hamiltonicity. The proof uses the coupon collector’s problem togetherwith an interesting combinatorial
construction. It also leads to a polynomial time randomized algorithm for constructing Hamilton cycles whp for this
range of values for the parameters of the model.

(b) By applying the first and second moment methods, we show that when m = ⌊nα
⌋ for some fixed constant α < 1 and

for all λ = O(m1/4), the independence number of the Gn,m,λ model is approximately m
c0λ

, where c0 is the smallest real
number that satisfies c0 ≥ 1 and

c−1
0


1
α

− 1


lnm
λ

= c−1
0 + (1 − c−1

0 ) ln (1 − c−1
0 ) −

ln (c0λ)

c0λ
.

(c) Finally we give a note on Gn,m,p, that provides bounds on its independence number. Note that this was left open
in [10].

1 Unless stated otherwise, in this paper we assume that an event A = An happenswith high probability if its probability goes to 1 as n goes to infinity, i.e.
limn→∞ Pr(An) = 1.
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2. Notation and definition of the models

We now formally define the two models that concern this work. We choose to define them in chronological order.

Definition 1 (Random Intersection Graph — Gn,m,p [9,14]). Consider a universe M = {1, 2, . . . ,m} of elements and a set
of vertices V (G) = {v1, v2, . . . , vn}. If we assign independently to each vertex vj, j = 1, 2, . . . , n, a subset Svj of M
choosing each element i ∈ M independently with probability p and put an edge between two vertices vj1 , vj2 if and only if
Svj1

∩ Svj2
≠ ∅, then the resulting graph is an instance of the random intersection graph Gn,m,p. In this model we also denote

by Ll the set of vertices that have chosen label l ∈ M . The degree of v ∈ V (G) will be denoted by dG(v). Also, the set of edges
of Gn,m,p will be denoted by e(G).

Consider now the bipartite graph with vertex set V (G) ∪ M and edge set {(vj, i) : i ∈ Svj} = {(vj, i) : vj ∈ Li}. We will
refer to this graph as the bipartite random graph Bn,m,p associated to Gn,m,p.

Whenwe assume that every vertex chooses exactly λ labels, a completely different kind of randomization to intersection
graphs is introduced. This model is called uniform random intersection graphs model Gn,m,λ. This was first mentioned in [8],
and (apart from the case where the number of labels chosen by a vertex in Gn,m,p are concentrated around their mean value)
its probabilistic behavior seems a lot different than the one of Gn,m,p. Below is the formal definition of this model.

Definition 2 (Uniform Random Intersection Graph — Gn,m,λ [8]). Consider a universe M = {1, 2, . . . ,m} of labels and a set
of vertices V (G) = {v1, v2, . . . , vn}. If we assign independently to each vertex vj, j = 1, 2, . . . , n, a subset Svj ⊆ M of
exactly λ randomly chosen distinct labels and put an edge between two vertices vj1 , vj2 if and only if Svj1

∩ Svj2
≠ ∅, then

the resulting graph is an instance of the uniform random intersection graph Gn,m,λ.

The main focus of this paper is about Hamiltonicity and the independence number of the uniform random intersection
graphs model in the interesting case when the number of labels is much smaller than the number of vertices. In particular,
we are interested in the case where the number of vertices n is large and ideally goes to infinity. Parametersm, λ and p are
generally defined as functions of n. Therefore, all asymptotics in this paper are with respect to n → ∞.

The independence number of a graph G is denoted by α(G) and is equal to the cardinality of the maximum independent
set of G, i.e. the size of the largest set of vertices of G with no edges between them. More specifically, in Section 3 we prove
that if the number of labels is small enough then even λ = 2 suffices to prove that Gn,m,λ has a Hamilton cycle almost surely.
Section 4 concerns the existence of independent sets of various sizes in Gn,m,λ. Finally, in Section 5 we give a note on the
independence number for Gn,m,p, which was left open in [10].

To prove the existence of independent sets of size k with high probability (whp), the second moment method is used,
which is briefly described below (see [1] for a nice treatment of probabilistic methods). Suppose that X = X1 +· · · Xk, where
Xi is the indicator randomvariable of event Ai. For indices i, j, wewrite i ∼ j iff i ≠ j and the events Ai, Aj are not independent.
Now let

∆ =

−
i∼j

Pr(Ai ∩ Aj)

where the sum is over ordered pairs. Now when i ∼ j, Cov(Xi, Xj) ≤ E[XiXj] = Pr(Ai ∩ Aj), which gives

Var(X) ≤ E[X] + ∆. (1)

We say that X1, . . . , Xk are symmetric if for every i ≠ i′ there is an automorphism of the underlying probability space
that sends Ai to event Ai′ . This means that for every fixed i, i′, with i ≠ i′ the following holds−

j∼i

Pr(Aj|Ai) =

−
j∼i′

Pr(Aj|Ai′)
def
= ∆∗.

Hence, ∆∗ is independent of the (fixed) choice of i, which gives

∆ =

−
i

Pr(Ai)
−
j∼i

Pr(Aj|Ai) = E[X]∆∗.

Hence, by using (1) and Chebyshev’s inequality we get

Theorem 1 ([1]). If E[X] → ∞ and ∆∗
= o(E[X]), then X > 0 whp. Furthermore X ∼ E[X] whp.

3. A coupon-collector result

In this section, we prove that Gn,m,λ has a Hamilton cycle with high probability (whp) when the number of vertices is
large enough, even for a very small constant λ ≥ 2.
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Theorem 2. Let e0 =
m

λ


. If n ≥ (1 + ϵ)e0 ln e0, for some constant ϵ > 0 arbitrarily small, then Gn,m,λ, with m ≥ λ ≥ 2, is

Hamiltonian with high probability as n goes to infinity.

Proof. For simplicity, we will refer to a set of λ labels as a set element. The total number of possible set elements in Gn,m,λ is
then obviously e0. Let Ee be the event that no vertex chooses e. By independence,

Pr(Ee) =


1 −

1
e0

n

.

Let X denote the mean number of set elements not chosen by any vertex. Then

E[X] = e0 Pr(Ee) ≤ eln e0−
n
e0 → 0

for any n ≥ (1 + ϵ)e0 ln e0. Hence, the vertices of Gn,m,λ will have chosen all available set elements (choosing exactly 1 set
element each) whp.

We now complete the proof by showing how this implies the existence of a Hamiltonian cycle in the case λ ≥ 2. Consider
an arbitrary ordering of the labels of the graph {l1, l2, . . . , lm} (we can use the canonical ordering implied by the set M, but
any ordering will suffice for our purposes) and construct the sets D1,D2, . . . ,Dm, where Di = {v ∈ V : li ∈ Sv and lj /∈
Sv, for all j ≤ i− 1}, i.e. Di is the set of vertices that have chosen label li and none of the labels l1, . . . , li−1. Notice that these
sets form a partition of the vertex set. We now establish two properties that these sets have.

1. First of all, note that since the vertices of Gn,m,λ have chosen every available set element, wewill have that the only empty
sets will be all Di with i = m − λ + 2, . . . ,m. Indeed, for all i ≤ m − λ + 1, there will be at least one vertex u that has
i ∈ Su and Su ⊆ {li, . . . lm}. Also, since every vertex chooses exactly λ distinct labels, every vertex that has chosen li, for
i = m − λ + 2, . . . ,m, must belong to exactly one of D1, . . . ,Dm−λ+1.

2. Second, note that by construction (of the Dis), and because of the fact that the vertices of Gn,m,λ have chosen every
available set element, there will be at least one edge between Di and Dj, for all i = 1, . . . ,m − λ and all j =

i + 1, . . . ,m − λ + 1. Also, for every edge {xi, yi+1} between Di and Di+1, i = 1, . . . ,m − λ − 1, there is an edge
{xi+1, yi+2} between Di+1 and Di+2 that satisfies {xi, yi+1} ∩ {xi+1, yi+2} = ∅, unless |Di+1| = 1, where yi+1 ≡ xj+1.
Indeed, this is a consequence of the fact that the vertices of Gn,m,λ have chosen every available set element (i.e. every
combination of λ labels) whp. Finally, all edges {xj, yj+1} between Dj and Dj+1, for every j = i + 2, . . . ,m − λ, satisfy
{xi, yi+1} ∩ {xj, yj+1} = ∅, by the construction of the sets Di.

These two properties allow us to fix a sequence of pairs {xi, yi+1}, for all i = 1, 2, . . . ,m − λ, that are disjoint, except
for the case where some |Di| = 1, which does not change our proof. As a final step, let y1 be a vertex that satisfies
{l1, lm−λ+1} ⊆ Sy1 , and Sy1\{l1, lm−λ+1} ⊆ {lm−λ+2, . . . , lm}. Such a vertex exists whp and it is connected to all vertices
in Dm−λ+1 since lm−λ+1 ∈ Sy1 .

Let now σi, i = 1, . . . ,m − λ be an arbitrary ordering of the set Di, that begins with yi and ends with xi. Also, let σm−λ+1
be an arbitrary ordering or the set Dm−λ+1, that begins with ym−λ+1. Since every Di is a clique, it is easy to verify that the
sequence σ1σ2 · · · σm−λσm−λ+1 is indeed a Hamilton cycle. �

Note here that λ = 2 is in fact as small as one can have in order to achieve Hamiltonicity. Indeed, for λ = 1 the graph is
disconnected (see also [2]). In this sense, our result is optimal. Finally, note that our proof leads naturally to a randomized
polynomial time (in terms of n andm) algorithm for constructing Hamilton cycles whp in this case.

4. The size of independent sets in Gn,m,λ

In this section, wewill use the first and secondmoment probabilistic methods to approximate whp the size of the largest
independent set in Gn,m,λ, for m = ⌊nα

⌋, constant α < 1 and λ = O(m1/4).
We will need the following useful lemma, concerning the properties of a specific function that arises in the application

of the probabilistic method in our case.

Lemma 1. Let m be an increasing function of n, let α < 1 be a positive constant and let λ = O(m1/4) be a positive integer.
Consider the function f : (0, 1) → R given by the formula

f (x) = x

1
α

− 1


lnm
λ

− x − (1 − x) ln (1 − x) + x
ln


λ
x


λ

.

If ϵ is any sufficiently small constant, then the following hold:

(a) If limx→1− f (x) =
 1

α
− 1

 lnm
λ

− 1 +
ln λ
λ

≥ 0, then the equation f (x) = 0 does not have any solution in (0, 1) and also
f (1 − ϵ) > 0.
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(b) If limx→1− f (x) =
 1

α
− 1

 lnm
λ

− 1 +
ln λ
λ

< 0, then the equation f (x) = 0 has a unique solution x0 ∈ (0, 1), for which

f ((1 − ϵ)x0) > 0, x0 > ln lnm
λ

and, if also (1 + ϵ)x0 < 1, then −f ((1 + ϵ)x0) = ω

x0 1

λ


= ω


ln lnm

λ2


.

Proof. The first derivative of f is given by

df (x)
dx

=


1
α

− 1


lnm
λ

+ ln (1 − x) +
ln


λ
x


λ

−
1
λ

(2)

and its second derivative is given by

d2f (x)
dx2

= −
1

1 − x
−

1
xλ

. (3)

Moreover, by using (2) and the definition of f , we get that

f (x) = x
df (x)
dx

− x − ln (1 − x) +
x
λ

= x
df (x)
dx

+
x
λ

+

−
i≥2

xi

i
(4)

where in the second equality we used the Taylor expansion ln (1 − x) = −
∑

i≥1
xi
i , valid for all |x| < 1.

From the above, we can see that d2f (x)
dx2

< 0, for all x ∈ (0, 1), and so df (x)
dx is monotone decreasing in this interval.

Moreover, we have that limx→0+
df (x)
dx > 0 and limx→1−

df (x)
dx < 0, which means that the equation df (x)

dx = 0 has a unique
solution in (0, 1), where also f is maximized. Let ξ ∈ (0, 1) be the unique solution of df (x)

dx = 0. By (4), we conclude that
f (ξ) > 0.

(a) To prove the first part of the Lemma, note that limx→0+ f (x) = 0 and also limx→1− f (x) =
 1

α
− 1

 lnm
λ

− 1+
ln λ
λ

≥ 0
by assumption. Hence, since df (x)

dx and f (x) are continuous in (0, 1), the equation f (x) = 0 cannot have a solution in (0, 1)
for the range of values specified in this part of the lemma, because otherwise the equation df (x)

dx = 0 should have had at least
one more solution in (0, 1), which leads to a contradiction.

Furthermore, for any sufficiently small positive constant ϵ (which is less than 1), we have that f (1 − ϵ) = (1 −

ϵ)
 1

α
− 1

 lnm
λ

− 1 +
ln λ
λ


− ϵ ln ϵ − (1 − ϵ) ln (1−ϵ)

λ
> 0.

(b) In this case, the existence and uniqueness of the solution of the equation f (x) = 0 in (0, 1) comes from the
continuity of df (x)

dx and f (x) in (0, 1), combined with the observations that limx→0+ f (x) = 0, f (ξ) > 0 and limx→1− f (x) = 1
α

− 1
 lnm

λ
− 1 +

ln λ
λ

< 0. Indeed, the equation f (x) = 0 has no solution in (0, ξ ] and exactly one solution in (ξ , 1).
It is now easy to verify from the above that, if x0 is the unique solution to f (x) = 0 in (0, 1), then f is positive in (0, x0)

and hence, if ϵ is a sufficiently small positive constant (which is less than 1), then f ((1 − ϵ)x0) > 0.
Moreover, since for this range of valueswehave

 1
α

− 1
 lnm

λ
−1+

ln λ
λ

< 0, itmust be thatλ = ω(1) andmore specifically
λ >

 1
α

− 1
 lnm

1−o(1) . Hence, by the formula for df (x)
dx , the unique solution ξ to df (x)

dx = 0 in (0, 1) satisfies the inequality ξ >

ln lnm
λ

, because limx→1−
df (x)
dx < 0 and

df

ln lnm

λ


dx > 0. In view of the above, the solution x0 to f (x) = 0 in (0, 1) should satisfy

the inequalities x0 > ξ > ln lnm
λ

. Notice now that, for all x ∈ (0, 1), we have that d2f (x)
dx2

< −1, which (if also (1 + ϵ)x0 < 1
so that f is well defined) means that df ((1+ϵ)x0)

dx ≤ −ϵx0 and finally f ((1 + ϵ)x0) ≤ −ϵ2x20. We conclude then that, in the

range of parameters specified in this part of the lemma, we have that −f ((1 + ϵ)x0) ≥ ϵ2x20 = ω
 x0

λ


= ω


ln lnm

λ2


, which

completes the proof. �

We are now ready for the application of the probabilistic method. Let X (k) be the number of independent sets of size k in
Gn,m,λ. The following theorem concerns the asymptotic behavior of the mean value of X (k).

Theorem 3. Let Gn,m,λ be a random instance of the uniform random intersection graphs model, with m = ⌊nα
⌋, α < 1 and

λ = O(m1/4). Let also c0 be the solution of the equation

c−1
0


1
α

− 1


lnm
λ

= c−1
0 + (1 − c−1

0 ) ln (1 − c−1
0 ) −

ln (c0λ)

c0λ
(5)

if there is such a solution in (1, ∞) and c0 = 1 otherwise.

Then, for any positive constant ϵ that can be arbitrarily small, we have that E
[
X

(1+ϵ) m

c0λ

]
→ 0 and E

[
X

(1−ϵ) m

c0λ

]
→ ∞.
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Proof. Let V ′ be an arbitrary set of k vertices. In order for V ′ to be independent, each vertex in it should choose its labels in
such a way that Sv ∩ Su = ∅, for all u, v ∈ V ′. So, the probability that V ′ is an independent set is

p∗(k) ≡ Pr(V ′ does not contain any edges) =

m
λ

m−λ

λ

m−2λ
λ


· · ·
m−(k−1)λ

λ

m
λ

k
=

(m−λ)!

(m−kλ)!

(m(m − 1) · · · (m − λ + 1))k−1
.

Wenote here that, by the definition of the uniform random intersection graphsmodel, the size of the largest independent
set of vertices cannot be more than m/λ (since every vertex selects exactly λ distinct labels in M), and so only values for k
such that kλ ≤ m are of interest. However, for technical reasons, we will require that kλ ≤ m − 1. Since λ = o(m), this
assumption does not affect the generality of our theorem.

By using now Stirling’s approximation and the fact that λ = O(m1/4), we get that

p∗(k) =

Θ(1)
√
2π(m−λ)


m−λ
e

m−λ

√
2π(m−kλ)


m−kλ

e

m−kλ

(m(1 − O(λ/m)))λ(k−1)

= e(m−λ) ln (m−λ)+λ−(m−kλ) ln (m−kλ)−kλ−λ(k−1) ln (m(1−O(λ/m)))+O(lnm)

= em lnm−(m−kλ) ln (m−kλ)−kλ lnm−kλ±O(λ+lnm)

where in the last equality we used the fact that λ(k − 1) ln (1 − O(λ/m)) = O(λ), since λ = o(m) and k − 1 ≤ m/λ.
Moreover, taking into consideration that k ≤

m
λ

= o(n) and by using the linearity of expectation, we get that

E[X (k)
] =


n
k


p∗(k) =

(n(1 − O(k/n)))k

k!
p∗(k)

=
(n(1 − O(k/n)))k

Θ(1)
√
2πk

 k
e

k p∗(k)

= ek ln n−k ln k+k−o(k)p∗(k)
= ek ln (n/k)+m lnm−(m−kλ) ln (m−kλ)−kλ lnm−kλ+k±Res (6)

for some positive Res = o(k) + O(λ + lnm).
We now set n = m1/α and k ≡

m
cλ , where c = c(m) is a function ofm (and λ) that is greater than 1 (but as the reader can

see it can be quite close to 1 depending on the values ofm and λ). By (6) we then have that

E

X( m

cλ )


= e
m
cλ ln


cλm

1
α −1


+m lnm−

m
c lnm−m


1− 1

c


ln

m

1− 1

c


−

m
c +

m
λc ±Res

= em

1
c


1
α −1


lnm
λ

−
1
c −


1− 1

c


ln

1− 1

c


+

ln (cλ)
cλ


+

m
λc ±Res

. (7)

By now using Lemma 1, we can see that c0 is well defined, in the sense that it is uniquely defined and it satisfies

the claims of the theorem. Indeed, if ϵ is an arbitrarily small positive constant, we then have that E
[
X

(1−ϵ) m

c0λ

]
=

emf

(1−ϵ) 1

c0


+

m(1−ϵ)
λc0

±Res
→ ∞, since either c0 = 1, or 1

c0
> ln lnm

λ
, by part (b) of Lemma 1, so m

λ(1−ϵ)c0
= ω(Res). Moreover,

if also (1 + ϵ) 1
c0

< 1 holds, then E
[
X

(1+ϵ) m

c0λ

]
= emf


(1+ϵ) 1

c0


+

m(1+ϵ)
λc0

±Res
→ 0, by part (b) of Lemma 1. Finally, we note

that, for the case (1+ ϵ) 1
c0

≥ 1, it suffices to observe that ϵ is arbitrarily small and also that the size of any independent set
cannot be larger than m

λ
. This completes the proof of the theorem. �

By now using Markov’s inequality together with Theorem 3, we get the following

Corollary 1. Let Gn,m,λ be a random instance of the uniform random intersection graphs model, with m = ⌊nα
⌋, α < 1 and

λ = O(m1/4). Let also c0 be as in Theorem 3. Then, with probability that tends to 1, as n → ∞, the size of the largest independent
set in Gn,m,λ is no more than (1 + ϵ) m

c0λ
, for any constant ϵ > 0 that can be arbitrarily small.

We now continue by applying the secondmoment method in order to prove the existence of ‘‘large’’ independent sets of
vertices whp. More precisely, the following theorem will help us find a quite good approximation of the size of the largest
independent set of vertices in Gn,m,λ, with m = ⌊nα

⌋, α < 1 and λ = O(m1/4), which holds with high probability.
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Theorem 4. Let Gn,m,λ be a random instance of the uniform random intersection graphs model, with m = ⌊nα
⌋, α < 1 and

λ = O(m1/4). Let also c0 be as in Theorem 3. Then, with probability that tends to 1, as n → ∞, there are independent sets in
Gn,m,λ, with size at least (1 − ϵ) m

c0λ
, for any constant ϵ > 0 that can be arbitrarily small.

Proof. Set k = ⌊(1 − ϵ) m
c0λ

⌋. Note that, by Lemma 1, we have that k = ω(1). In order to prove the theorem, we will use
the second moment probabilistic method. Let V ′ be an independent set of k vertices, and let V ′′ be another set of k vertices
that has exactly s vertices in commonwith V ′. Given that V ′ has no edges, in order for V ′′ to be an independent set, the k− s
vertices of V ′′ not belonging to V ′ should choose non-overlapping label sets, that also do not overlap with the sλ distinct
labels chosen by the s vertices in V ′

∩ V ′′ (that do not have edges between them by assumption). So, we have that

Pr(V ′′ is an independent set|V ′ is an independent set) =

m−sλ
λ

m−(s+1)λ
λ


· · ·
m−(k−1)λ

λ

m
λ

k−s

=
(m − sλ)!

(m − kλ)!


(m − λ)!

m!

k−s

.

For a set S of vertices, let XS be an indicator random variable that takes the value 1 if S is an independent set and 0
otherwise. In the current setting, the quantity ∆∗ involved in the second moment method (see Section 2) is given by the
formula

∆∗
=

k−1−
s=2


n − k
k − s


k
s


Pr(XV ′′ = 1|XV ′ = 1).

We now define the following quantity:

R ≡
∆∗

E[X (k)]
=

k−1−
s=2


n − k
k − s


k
s


Pr(XS′ = 1|XS = 1)

E[X (k)]

=

k−1−
s=2

n−k
k−s

k
s

n
k

 (m − sλ)!

(m − λ)!


m!

(m − λ)!

s−1

.

Let also

as ≡

n−k
k−s

k
s

n
k

 .

and

bs ≡
(m − sλ)!

(m − λ)!


m!

(m − λ)!

s−1

.

By now setting Rs ≡ asbs, if we show that Rs = o
 1
k


, then R = o(1), which leads to the conclusion of the theorem,

by using the second moment probabilistic method (see Section 2). For the proof, we need to find quite tight bounds for the
quantities as and bs.

First of all, by using the relation nk

kk
≤
n
k


≤

nk

(ek)k
, we get that

as ≤
kk+s

(e(k − s))k−s(es)sns

=

 k
n

s
e

1 −

s
k

k−s e s
k

s
=

e
−s ln


m
s

s
km

1
α −1



e

1 −

s
k

k−s e s
k

s
=

e−sλ


1
α −1


lnm
λ

−sλ
ln(m

s )
λ

−s ln ( s
k )

e

1 −

s
k

k−s e s
k

s
=

e−sλ


1
α −1


lnm
λ

−sλ
ln(m

s )
λ

ek

1 −

s
k

k−s  s
k

2s . (8)
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Moreover, by Stirling’s approximation, we get that

bs ≤ Θ(1)

m−sλ
e

m−sλm−λ
e

m−λ

 √
2πm

√
2π(m − λ)

k−1  m
e

mm−λ
e

m−λ

s−1

≤ Θ(1)

m−sλ
e

m−sλm−λ
e

m−λ

 m
e

mm−λ
e

m−λ

s−1

= Θ(1)
(m − sλ)m−sλ

(m − λ)m−λ


mm

(m − λ)m−λ

s−1

= Θ(1)
(m − sλ)m−sλ

(m − λ)m−λ
mλ(s−1)


1 +

λ

m − λ

(m−λ)(s−1)

≤ Θ(1)
(m − sλ)m−sλ

(m − λ)m−λ
mλ(s−1)eλ(s−1)

= Θ(1)e(m−sλ) ln (m−sλ)−(m−λ) ln (m−λ)+λ(s−1) lnm+λ(s−1)

= Θ(1)em

1− sλ

m


ln

1− sλ

m


+m


1− sλ

m


lnm−(m−λ) lnm−(m−λ) ln


1− λ

m


+λ(s−1) lnm+λ(s−1)

≤ Θ(1)em

1− sλ

m


ln

1− sλ

m


+sλ

. (9)

We note here that all the Θ(1) quantities that appear in the above inequalities come from Stirling’s approximation and
actually depend on the constant ϵ. In particular, for the first inequality we used the fact that s ≤ k and for the second

inequality we used the fact that k−1 ≤
m
λ
, so


1 +

λ
m−λ

(k−1)/2
≤ e

λ(k−1)
2(m−λ) is bounded by a constant. Furthermore, in the fifth

inequality, we used the inequality 1 + x ≤ ex, which means that the Θ(1) quantity changed by a multiplicative constant.
Finally, in the last equality we used the expansion ln


1 −

λ
m


= −

∑
i≥1

1
i


λ
m

i (which converges for any λ = o(m)), in

order to show that −(m − λ) ln

1 −

λ
m


≤ (m − λ)


λ
m +

1
2

∑
i≥2


λ
m

i
= λ + O(1), for any λ = O(m1/4).

We now set x =
sλ
m . By combining inequalities (8) and (9), we get that

Rs ≤ Θ(1)
e−mf (x)

ek

1 −

s
k

k−s  s
k

2s = Θ(1)
e−mf (x)

ek+k(1− s
k ) ln (1− s

k )+2k s
k ln ( s

k )
(10)

where f (x) = x
 1

α
− 1

 lnm
λ

− x − (1 − x) ln (1 − x) + x
ln


λ
x


λ

is the function of Lemma 1. Moreover, it is straightforward

to show that
 s
k

2s
≥ e−

2
e k. Hence, we have that

Rs ≤ Θ(1)
e−mf (x)

e

1− 2

e


kek(1−

s
k ) ln (1− s

k )
.

By now using the expansion ln

1 −

s
k


= −

∑
i≥1

1
i

 s
k

i, together with the formula relating f to its first derivative (see
proof of Lemma 1), we get that

Rs ≤ Θ(1)
e−m


x df (x)

dx −x−ln (1−x)+ x
λ



e

1− 2

e


kek


−

s
k +
∑

i≥2(
s
k )

i 1
i(i−1)

 = Θ(1)
e
−m


x df (x)

dx +
∑

i≥2
xi
i +

x
λ



e

1− 2

e


k+k


−

s
k +
∑

i≥2(
s
k )

i 1
i(i−1)

 . (11)

Let now ξ be the (unique) solution of the equation df (x)
dx = 0 in (0, 1). As we also saw in the proof of Lemma 1, we have

that df (x)
dx > 0, for all x ∈ (0, ξ) and df (x)

dx < 0, for all x ∈


ξ, 1−ϵ

c0


. By now observing that s =

mx
λ
, by (11) we get that

Rs ≤ Θ(1)
e
−m


x df (x)

dx +
∑

i≥2
xi
i



e

1− 2

e


k+k

∑
i≥2(

s
k )

i 1
i(i−1)

= o

1
k


for all x ∈ (0, ξ).

Setting now y =
s
k , the exponent of the denominator in the right side of (10) divided by k is given by the function

h(y) = 1 + (1 − y) ln (1 − y) + 2y ln y. A careful analysis of h(y) can show that dh(y)
dy = − ln (1 − y) + 2 ln y + 1 and

d2h(y)
dy2

> 0, for any y ∈ (0, 1). Hence, the function h is minimized at y0 with − ln (1 − y0) + 2 ln y0 + 1 = 0, that is
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y0 =
−1+

√
1+4e

2e ≈ 0.44987. Unfortunately 0 > h(y0) > −0.2, but we do have that h(y) > 1
7000 , for all y /∈

 1
4 ,

2
3


. This

means that Rs = o
 1
k


, for every s ≥

2k
3 and every s ≤

k
4 .

In view of the above and by noting that s
k =

c0x
1−ϵ

, we conclude that we only have to show that Rs = o
 1
k


holds even

for s such that s
k ∈


max


1
4 ,

c0ξ
1−ϵ


, 2

3


, or equivalently, for x ∈


max


(1−ϵ)

4c0
, ξ


, 2(1−ϵ)

3c0


. Of course, if the above interval

is empty (i.e. its lower bound is greater than the upper bound), then we are done. Such a thing can happen for example if
λ = o(lnm), so that ξ → 1. Hence, we only have to deal with the case λ = Ω(lnm). However, as we saw in the proof of
Lemma 1, we have that d2f (x)

dx2
< −1, which means that f (x) ≥

1
9

1
c20
, for every x < 2(1−ϵ)

3c0
, by the definition of c0. By (10) and

the fact that h(y0) > −0.2, we then get that

Rs ≤ Θ(1)
e
−m 1

9
1
c20

e−0.2k
= Θ(1)e−k λ

8c0
+0.2k

.

By the second part of Lemma 1 though, we have that 1
c0

= ω
 1

λ


, for λ = Ω(ln n). Hence, we come to the desired result that

Rs = o
 1
k


, which completes the proof of the theorem. �

By now combining Corollary 1 and Theorem 4 and by pointing out that the positive constant ϵ can be arbitrarily small,
we get the following theorem that gives a quite good approximation for the size of the largest independent set in Gn,m,λ:

Theorem 5. Let Gn,m,λ be a random instance of the uniform random intersection graphs model, with m = ⌊nα
⌋, α < 1 and

λ = O(m1/4). Let also c0 be as in Theorem 3. Then, with probability that tends to 1, when n → ∞, the size k of the largest
independent set of vertices in Gn,m,λ satisfies k ∼

m
c0λ

. �

As the careful reader may have noticed by now, finding a closed formula for c0 in Theorem 3 seems quite difficult. In fact
it still remains an open problem. However, for some range of values of m, λ, this is still possible. The next result is a direct
consequence of Theorem 5 and the definition of function f (x) and it demystifies the nature of c0 for some (quite wide) range
of values for the parameters of Gn,m,λ.

Corollary 2. Let Gn,m,λ be a random instance of the uniform random intersection graphs model, with m = ⌊nα
⌋, α < 1 and let k

be the size of the largest independent set of vertices in Gn,m,λ. Then, with probability that tends to 1, as n → ∞, the following are
true:

(i) If
 1

α
− 1

 lnm
λ

− 1 +
ln λ
λ

≥ 0, then k ∼
m
λ
. In particular, the above inequality is satisfied for any λ ≥ B lnm, where B is a

positive constant such that B ≤
1
α

− 1.
(ii) If λ = B′ lnm, where B′ > 1

α
− 1 is a constant, then c0 in Theorem 5 is a constant larger than 1, therefore k = Θ

m
λ


.

(iii) If λ = ω(lnm) (but λ = O(m1/4)), then c0 in Theorem 5 satisfies c0 ∼
αλ

2(1−α) lnm , therefore k ∼ 2
 1

α
− 1

 m lnm
λ2

. �

Remark. It is straightforward to verify that the unconditional probability of existence of an edge between two fixed vertices

in Gn,m,λ, withm = ⌊nα
⌋, α < 1 and λ = O(m1/4), is p̂ = 1−

(m−λ
λ )

(mλ)
∼

λ2

m . We could now witness the effect that labels have
on the appearance of edges in Gn,m,λ by comparing its independence number to the independence number of a Erdős–Rényi

random graph Gn,p̂, the latter being asymptotically equal to 2 ln np̂
p̂ ∼

2m ln nλ2
m

λ2
. Using the results of Corollary 2, we can see

that when λ is small (e.g. λ = Θ(lnm)), then the independence number of Gn,m,λ is much larger (by a factor of λ) than the
independence number of Gn,p̂. On the other hand, when λ = ω(lnm), the two independence numbers become of the same
order.

5. A note on independent sets in Gn,m,p

In this section we give a brief note on α(Gn,m,p), i.e. the independence number of random intersection graphs, for some
ranges of the parametersm, p. We first prove the following

Lemma 2. Let Gn,m,p be a random instance of the random intersection graphs model, with p = ω
 ln n

m


and p = o


ln n
m


=

o(1). Then α(Gn,m,p) ≤
(2+o(1)) ln n

mp2
whp.

Proof. Let δ be an arbitrarily small positive constant. Note that, for any k ∼
(2+δ) ln n

mp2
, the conditions of the statement of our

Lemma imply respectively kp → 0 and k = ω(1). Furthermore

(1 − p)k + kp(1 − p)k−1
= 1 −


k
2


p2(1 − p)k−2

−


k
3


p3(1 − p)k−3

−


k
4


p4(1 − p)k−4

− o(k4p4).
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Therefore, we get that

(1 − p)k + kp(1 − p)k−1
∼ e−

k2p2
2 ±O(kp2+k3p3). (12)

Now let X (k) denote the number of independent sets of size k in Gn,m,p. Then, by using the fact
n
k


= ek ln (n/k)+O(k), we

have

E[X (k)
] =


n
k

 
(1 − p)k + kp(1 − p)k−1m

∼ e
k

ln (n/k)− kmp2

2


+O(k)±O(mkp2+mk3p3)

. (13)

By (13) we now get that E[X (k)
] → 0 for any k ≥

(2+δ) ln n
mp2

. By using Markov’s inequality we conclude the proof of the
lemma. �

We will now apply the second moment method to prove existence of large independent sets of vertices. As a first step
we compare ∆∗ to E[X (k)

], where as before

∆∗
=

k−1−
s=1


n − k
k − s


k
s


Pr(XS′ = 1|XS = 1)

for |S ′
∩ S| = s, |VS′ | = |VS | = k, and S a fixed independent set of vertices. In [10] the authors have proved that

E[X (k)
] =


n
k

 
(1 − p)k + kp(1 − p)k−1m

and have also provided an exact formula for Pr(XS′ = 1|XS = 1)
def
= γ (k, s), namely

γ (k, s) =


(1 − p)k−s

+ (k − s)p(1 − p)k−s−1

1 −

sp
1 + (k − 1)p

m

= (1 − p)−sm


(1 − p)k + (k − s)p(1 − p)k−1

1 −

sp
1 + (k − 1)p

m

≤ (1 − p)−sm E[X (k)
]n

k

 .

Consequently, we have

∆∗

E[X (k)]
≤

k−1−
s=1

n−k
k−s

k
s

n
k

 (1 − p)−sm

≤

k−1−
s=1

(n−k)k−s

(k−s)!

k
s


(n−k)k

k!

(1 − p)−sm

≤

k−1−
s=1

k!
k
s


(n − k)s(k − s)!


1 +

p
1 − p

sm

≤

k−1−
s=1

k!
k
s


(n − k)s(k − s)!

e
smp
1−p (14)

where in the last inequality we used the fact that 1 +
p

1−p ≤ e
p

1−p .

If we now assume thatmp ≤ β ln n, for some constant β < 1, then for all k = o

n

1−β
3


and p → 0, we have by (14) that

∆∗

E[X (k)]
≤

k−1−
s=1

ks
k
s


(n − k)s

e
smp
1−p

≤

k−1−
s=1


k2

n

s

e
smp
1−p

=

k−1−
s=1

es


mp
1−p +2 ln k−ln n


= o(1). (15)
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Note now that for the range of parameters of the following theorem, for any k ∼
2 ln n
mp2−ϵ , we have that ω(1) = k =

o

n

1−β
3


, and also kp → 0. This means that we can apply the relation (13) of Lemma 2 to prove that E[X (k)

] → ∞. The
following theorem then follows by (15) and the second moment method.

Theorem 6. Let Gn,m, be a random instance of the random intersection graphs model. Let also ϵ be an arbitrarily small positive

constant and β a positive constant less than 1. Assume that mp ≤ β ln n, p = ω


1−ϵ


ln n
m


, p = o


2−ϵ


ln n
m


and p =

ω


2−ϵ


ln n

n
1−β
3 m


. Then α(Gn,m,p) ≥

2 ln n
mp2−ϵ whp. �

6. Conclusions and future work

In this work we studied Hamiltonicity and independent sets in the uniform random intersection graphs model Gn,m,λ. In
particular, we approximated the independence number of Gn,m,λ for m = ⌊nα

⌋, α < 1 and for all λ = O(m1/4), in terms of
the solution of some function f . An open problem here is the derivation of a closed expression for c0 of Theorem 3.Moreover,
the problem of determining the cardinality of the maximum independent set in Gn,m,λ for λ ∈ [m1/4,m1/2

] remains open. A
possible solution to this could be the use of the weighted second moment method used in [4].

The design and analysis of algorithms that construct independent sets (when their input is an instance of Gn,m,λ), whose
cardinality approaches the theoretical bounds given here, is a subject of our future work. Finally, we are very interested in
determining the chromatic number χ(Gn,m,λ) of the uniform random intersection graphs model, or finding an upper bound
that is as close as possible to the obvious lower bound n

α(Gn,m,λ)
, where α(Gn,m,λ) is the independence number.
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