1,087 research outputs found

    The most creative organization in the world? The BBC, 'creativity' and managerial style

    Get PDF
    The managerial styles of two BBC directors-general, John Birt and Greg Dyke, have often been contrasted but not so far analysed from the perspective of their different views of 'creative management'. This article first addresses the orthodox reading of 'Birtism'; second, it locates Dyke's 'creative' turn in the wider context of fashionable neo-management theory and UK government creative industries policy; third, it details Dyke's drive to change the BBC's culture; and finally, it concludes with some reflections on the uncertainties inherent in managing a creative organisation

    Novel Protein Kinase Signaling Systems Regulating Lifespan Identified by Small Molecule Library Screening Using Drosophila

    Get PDF
    Protein kinase signaling cascades control most aspects of cellular function. The ATP binding domains of signaling protein kinases are the targets of most available inhibitors. These domains are highly conserved from mammals to flies. Herein we describe screening of a library of small molecule inhibitors of protein kinases for their ability to increase Drosophila lifespan. We developed an assay system which allowed screening using the small amounts of materials normally present in commercial chemical libraries. The studies identified 17 inhibitors, the majority of which targeted tyrosine kinases associated with the epidermal growth factor receptor (EGFR), platelet-derived growth factor (PDGF)/vascular endothelial growth factor (VEGF) receptors, G-protein coupled receptor (GPCR), Janus kinase (JAK)/signal transducer and activator of transcription (STAT), the insulin and insulin-like growth factor (IGFI) receptors. Comparison of the protein kinase signaling effects of the inhibitors in vitro defined a consensus intracellular signaling profile which included decreased signaling by p38MAPK (p38), c-Jun N-terminal kinase (JNK) and protein kinase C (PKC). If confirmed, many of these kinases will be novel additions to the signaling cascades known to regulate metazoan longevity

    Modelling of sea salt concentrations over Europe: key uncertainties and comparison with observations

    Get PDF
    Sea salt aerosol can significantly affect the air quality. Sea salt can cause enhanced concentrations of particulate matter and change particle chemical composition, in particular in coastal areas, and therefore should be accounted for in air quality modelling. We have used an EMEP Unified model to calculate sea salt concentrations and depositions over Europe, focusing on studying the effects of uncertainties in sea salt production and lifetime on calculation results. Model calculations of sea salt have been compared with EMEP observations of sodium concentrations in air and precipitation for a four year period, from 2004 to 2007, including size (fine/coarse) resolved EMEP intensive measurements in 2006 and 2007. In the presented calculations, sodium air concentrations are between 8% and 46% overestimated, whereas concentrations in precipitation are systematically underestimated by 65–70% for years 2004–2007. A series of model tests have been performed to investigate the reasons for this underestimation, but further studies are needed. The model is found to reproduce the spatial distribution of Na<sup>+</sup> in air and precipitation over Europe fairly well, and to capture most of sea salt episodes. The paper presents the main findings from a series of tests in which we compare several different sea spray source functions and also look at the effects of meteorological input and the efficiency of removal processes on calculated sea salt concentrations. Finally, sea salt calculations with the EMEP model have been compared with results from the SILAM model and observations for 2007. While the models produce quite close results for Na<sup>+</sup> at the majority of 26 measurement sites, discrepancies in terms of bias and temporal correlation are also found. Those differences are believed to occur due to differences in the representation of source function and size distribution of sea salt aerosol, different meteorology used for model runs and the different models' resolution. This study contributes to getting a better insight on uncertainties associated with sea salt calculations and thus facilitates further improvement of aerosol modelling on both regional and global scales

    Relating particle hygroscopicity and CCN activity to chemical composition during the HCCT-2010 field campaign

    Get PDF
    Particle hygroscopic growth at 90% RH (relative humidity), cloud condensation nuclei (CCN) activity, and size-resolved chemical composition were concurrently measured in the ThĂŒringer Wald mid-level mountain range in central Germany in the fall of 2010. The median hygroscopicity parameter values, Îș, of 50, 75, 100, 150, 200, and 250 nm particles derived from hygroscopicity measurements are respectively 0.14, 0.14, 0.17, 0.21, 0.24, and 0.28 during the sampling period. The closure between HTDMA (Hygroscopicity Tandem Differential Mobility Analyzers)-measured (ÎșHTDMA) and chemical composition-derived (Îșchem) hygroscopicity parameters was performed based on the Zdanovskii–Stokes–Robinson (ZSR) mixing rule. Using size-averaged chemical composition, the Îș values are substantially overpredicted (30 and 40% for 150 and 100 nm particles). Introducing size-resolved chemical composition substantially improved closure. We found that the evaporation of NH4NO3, which may happen in a HTDMA system, could lead to a discrepancy in predicted and measured particle hygroscopic growth. The hygroscopic parameter of the organic fraction, Îșorg, is positively correlated with the O : C ratio (Îșorg = 0.19 × (O : C) − 0.03). Such correlation is helpful to define the Îșorg value in the closure study. Îș derived from CCN measurement was around 30% (varied with particle diameters) higher than that determined from particle hygroscopic growth measurements (here, hydrophilic mode is considered only). This difference might be explained by the surface tension effects, solution non-ideality, gas-particle partitioning of semivolatile compounds, and the partial solubility of constituents or non-dissolved particle matter. Therefore, extrapolating from HTDMA data to properties at the point of activation should be done with great care. Finally, closure study between CCNc (cloud condensation nucleus counter)-measured (ÎșCCN) and chemical composition (ÎșCCN, chem) was performed using CCNc-derived Îș values for individual components. The results show that the ÎșCCN can be well predicted using particle size-resolved chemical composition and the ZSR mixing rule

    Influence of water uptake on the aerosol particle light scattering coefficients of the Central European aerosol

    Get PDF
    The influence of aerosol water uptake on the aerosol particle light scattering was examined at the regional continental research site Melpitz, Germany. The scattering enhancement factor f(RH), defined as the aerosol particle scattering coefficient at a certain relative humidity (RH) divided by its dry value, was measured using a humidified nephelometer. The chemical composition and other microphysical properties were measured in parallel. f(RH) showed a strong variation, e.g. with values between 1.2 and 3.6 at RH=85% and λ=550 nm. The chemical composition was found to be the main factor determining the magnitude of f(RH), since the magnitude of f(RH) clearly correlated with the inorganic mass fraction measured by an aerosol mass spectrometer (AMS). Hysteresis within the recorded humidograms was observed and explained by long-range transported sea salt. A closure study using Mie theory showed the consistency of the measured parameters

    Nucleic Acid, Antibody, and Virus Culture Methods to Detect Xenotropic MLV-Related Virus in Human Blood Samples

    Get PDF
    The MLV-related retrovirus, XMRV, was recently identified and reported to be associated with both prostate cancer and chronic fatigue syndrome. At the National Cancer Institute-Frederick, MD (NCI-Frederick), we developed highly sensitive methods to detect XMRV nucleic acids, antibodies, and replication competent virus. Analysis of XMRV-spiked samples and/or specimens from two pigtail macaques experimentally inoculated with 22Rv1 cell-derived XMRV confirmed the ability of the assays used to detect XMRV RNA and DNA, and culture isolatable virus when present, along with XMRV reactive antibody responses. Using these assays, we did not detect evidence of XMRV in blood samples (N = 134) or prostate specimens (N = 19) from two independent cohorts of patients with prostate cancer. Previous studies detected XMRV in prostate tissues. In the present study, we primarily investigated the levels of XMRV in blood plasma samples collected from patients with prostate cancer. These results demonstrate that while XMRV-related assays developed at the NCI-Frederick can readily measure XMRV nucleic acids, antibodies, and replication competent virus, no evidence of XMRV was found in the blood of patients with prostate cancer
    • 

    corecore