396 research outputs found

    Einstein-Podolsky-Rosen correlations between two uniformly accelerated oscillators

    Full text link
    We consider the quantum correlations, i.e. the entanglement, between two systems uniformly accelerated with identical acceleration a in opposite Rindler quadrants which have reached thermal equilibrium with the Unruh heat bath. To this end we study an exactly soluble model consisting of two oscillators coupled to a massless scalar field in 1+1 dimensions. We find that for some values of the parameters the oscillators get entangled shortly after the moment of closest approach. Because of boost invariance there are an infinite set of pairs of positions where the oscillators are entangled. The maximal entanglement between the oscillators is found to be approximately 1.4 entanglement bits.Comment: 11 page

    Massive spin 2 propagator on de Sitter space

    Full text link
    We compute the Pauli-Jordan, Hadamard and Feynman propagators for the massive metrical perturbations on de Sitter space. They are expressed both in terms of mode sums and in invariant forms.Comment: 30 pages + 1 eps fi

    A Special Class of Rank 10 and 11 Coxeter Groups

    Get PDF
    In the course of investigating regular subalgebras of E(10) related to cosmological solutions of 11-dimensional supergravity supporting an electric 4-form field, a class of rank 10 Coxeter subgroups of the Weyl group of E(10) was uncovered (hep-th/0606123). These Coxeter groups all share the property that their Coxeter graphs have incidence index 3, i.e. that each node is incident to three and only three single lines. Furthermore, the Coxeter exponents are either 2 or 3, but never infinity. We here go beyond subgroups of the Weyl group of E(10) and classify all rank 10 Coxeter groups with these properties. We find 21 distinct Coxeter groups of which 7 were already described in hep-th/0606123. Moreover, we extend the classification to the rank 11 case and we find 252 inequivalent rank 11 Coxeter groups with incidence index 4, of which at least 28 can be regularly embedded into E(11).Comment: 20 pages, Typos corrected, Erratum added correcting the total number of rank 11 Coxeter graphs with incidence index

    G3-homogeneous gravitational instantons

    Full text link
    We provide an exhaustive classification of self-dual four-dimensional gravitational instantons foliated with three-dimensional homogeneous spaces, i.e. homogeneous self-dual metrics on four-dimensional Euclidean spaces admitting a Bianchi simply transitive isometry group. The classification pattern is based on the algebra homomorphisms relating the Bianchi group and the duality group SO(3). New and general solutions are found for Bianchi III.Comment: 24 pages, few correction

    The Quantum Geometry of N=(2,2) Non-Linear Sigma-Models

    Full text link
    We consider a general N=(2,2) non-linear sigma-model in (2,2) superspace. Depending on the details of the complex structures involved, an off-shell description can be given in terms of chiral, twisted chiral and semi-chiral superfields. Using superspace techniques, we derive the conditions the potential has to satisfy in order to be ultra-violet finite at one loop. We pay particular attention to the effects due to the presence of semi-chiral superfields. A complete description of N=(2,2) strings follows from this.Comment: 9 pages, Late

    Novel Branches of (0,2) Theories

    Full text link
    We show that recently proposed linear sigma models with torsion can be obtained from unconventional branches of conventional gauge theories. This observation puts models with log interactions on firm footing. If non-anomalous multiplets are integrated out, the resulting low-energy theory involves log interactions of neutral fields. For these cases, we find a sigma model geometry which is both non-toric and includes brane sources. These are heterotic sigma models with branes. Surprisingly, there are massive models with compact complex non-Kahler target spaces, which include brane/anti-brane sources. The simplest conformal models describe wrapped heterotic NS5-branes. We present examples of both types.Comment: 36 pages, LaTeX, 2 figures; typo in Appendix fixed; references added and additional minor change

    Mimimal Length Uncertainty Principle and the Transplanckian Problem of Black Hole Physics

    Get PDF
    The minimal length uncertainty principle of Kempf, Mangano and Mann (KMM), as derived from a mutilated quantum commutator between coordinate and momentum, is applied to describe the modes and wave packets of Hawking particles evaporated from a black hole. The transplanckian problem is successfully confronted in that the Hawking particle no longer hugs the horizon at arbitrarily close distances. Rather the mode of Schwarzschild frequency ω\omega deviates from the conventional trajectory when the coordinate rr is given by ∣r−2M∣≃ÎČHω/2π| r - 2M|\simeq \beta_H \omega / 2 \pi in units of the non local distance legislated into the uncertainty relation. Wave packets straddle the horizon and spread out to fill the whole non local region. The charge carried by the packet (in the sense of the amount of "stuff" carried by the Klein--Gordon field) is not conserved in the non--local region and rapidly decreases to zero as time decreases. Read in the forward temporal direction, the non--local region thus is the seat of production of the Hawking particle and its partner. The KMM model was inspired by string theory for which the mutilated commutator has been proposed to describe an effective theory of high momentum scattering of zero mass modes. It is here interpreted in terms of dissipation which gives rise to the Hawking particle into a reservoir of other modes (of as yet unknown origin). On this basis it is conjectured that the Bekenstein--Hawking entropy finds its origin in the fluctuations of fields extending over the non local region.Comment: 12 pages (LateX), 1 figur
    • 

    corecore