The minimal length uncertainty principle of Kempf, Mangano and Mann (KMM), as
derived from a mutilated quantum commutator between coordinate and momentum, is
applied to describe the modes and wave packets of Hawking particles evaporated
from a black hole. The transplanckian problem is successfully confronted in
that the Hawking particle no longer hugs the horizon at arbitrarily close
distances. Rather the mode of Schwarzschild frequency ω deviates from
the conventional trajectory when the coordinate r is given by ∣r−2M∣≃βHω/2π in units of the non local distance legislated
into the uncertainty relation. Wave packets straddle the horizon and spread out
to fill the whole non local region. The charge carried by the packet (in the
sense of the amount of "stuff" carried by the Klein--Gordon field) is not
conserved in the non--local region and rapidly decreases to zero as time
decreases. Read in the forward temporal direction, the non--local region thus
is the seat of production of the Hawking particle and its partner. The KMM
model was inspired by string theory for which the mutilated commutator has been
proposed to describe an effective theory of high momentum scattering of zero
mass modes. It is here interpreted in terms of dissipation which gives rise to
the Hawking particle into a reservoir of other modes (of as yet unknown
origin). On this basis it is conjectured that the Bekenstein--Hawking entropy
finds its origin in the fluctuations of fields extending over the non local
region.Comment: 12 pages (LateX), 1 figur