52 research outputs found

    Critical Field Strength in an Electroclinic Liquid Crystal Elastomer

    Full text link
    We elucidate the polymer dynamics of a liquid crystal elastomer based on the time-dependent response of the pendent liquid crystal mesogens. The molecular tilt and switching time of mesogens are analyzed as a function of temperature and cross-linking density upon application of an electric field. We observe an unexpected maximum in the switching time of the liquid crystal mesogens at intermediate field strength. Analysis of the molecular tilt over multiple time regimes correlates the maximum response time with a transition to entangled polymer dynamics at a critical field strength.Comment: 4 pages, 3 figure

    Orientational order of a ferroelectric liquid crystal with small layer contraction

    Get PDF
    We present spectroscopic and optical studies of a non-layer-shrinkage ferroelectric liquid crystal DSiKN65. The orientational order parameters S, measured with respect to the smectic layer normal using IR spectroscopy on a sample aligned homeotropically, does not exhibit any significant variation between the smectic-A* and smectic-C* phases. In contrast the birefringence of a planar homogenous sample abruptly increases at the smectic-A* to smectic-C* transition. This suggests a general increase in the orientational order, which can be described by the orientational order parameters S\u27 defined with respect to the director. Simultaneous increase of S\u27 and the director tilt θ may explain the low shrinkage of smectic layers, which is consistent with recent theoretical models describing the smectic-A* to smectic-C* transition for such materials

    Strain Analysis of a Chiral Smectic A Elastomer

    Get PDF
    We present a detailed analysis of the molecular packing of a strained liquid crystal elastomer composed of chiral mesogens in the smectic A phase. X-ray diffraction patterns of the elastomer collected over a range of orientations with respect to the X-ray beam were used to reconstruct the three-dimensional scattering intensity as a function of tensile strain. For the first time, we show that the smectic domain order is preserved in these strained elastomers. Changes in the intensity within a given scattering plane are due to reorientation, and not loss, of the molecular order in directions orthogonal to the applied strain. Incorporating the physical parameters of the elastomer, a nonlinear elastic model is presented to describe the rotation of the smectic-layered domains under strain, thus providing a fundamental analysis to the mechanical response of these unique materials.Comment: 28 Page

    Pressure cycling technology for challenging proteomic sample processing: application to barnacle adhesive.

    Get PDF
    AbstractSuccessful proteomic characterization of biological material depends on the development of robust sample processing methods. The acorn barnacle Amphibalanus amphitrite is a biofouling model for adhesive processes, but the identification of causative proteins involved has been hindered by their insoluble nature. Although effective, existing sample processing methods are labor and time intensive, slowing progress in this field. Here, a more efficient sample processing method is described which exploits pressure cycling technology (PCT) in combination with protein solvents. PCT aids in protein extraction and digestion for proteomics analysis. Barnacle adhesive proteins can be extracted and digested in the same tube using PCT, minimizing sample loss, increasing throughput to 16 concurrently processed samples, and decreasing sample processing time to under 8 hours. PCT methods produced similar proteomes in comparison to previous methods. Two solvents which were ineffective at extracting proteins from the adhesive at ambient pressure (urea and methanol) produced more protein identifications under pressure than highly polar hexafluoroisopropanol, leading to the identification and description of >40 novel proteins at the interface. Some of these have homology to proteins with elastomeric properties or domains involved with protein-protein interactions, while many have no sequence similarity to proteins in publicly available databases, highlighting the unique adherent processes evolved by barnacles. The methods described here can not only be used to further characterize barnacle adhesive to combat fouling, but may also be applied to other recalcitrant biological samples, including aggregative or fibrillar protein matrices produced during disease, where a lack of efficient sample processing methods has impeded advancement. Data are available via ProteomeXchange with identifier PXD012730

    Molt-dependent transcriptomic analysis of cement proteins in the barnacle Amphibalanus amphitrite

    Full text link
    Abstract Background A complete understanding of barnacle adhesion remains elusive as the process occurs within and beneath the confines of a rigid calcified shell. Barnacle cement is mainly proteinaceous and several individual proteins have been identified in the hardened cement at the barnacle-substrate interface. Little is known about the molt- and tissue-specific expression of cement protein genes but could offer valuable insight into the complex multi-step processes of barnacle growth and adhesion. Methods The main body and sub-mantle tissue of the barnacle Amphibalanus amphitrite (basionym Balanus amphitrite) were collected in pre- and post-molt stages. RNA-seq technology was used to analyze the transcriptome for differential gene expression at these two stages and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) was used to analyze the protein content of barnacle secretions. Results We report on the transcriptomic analysis of barnacle cement gland tissue in pre- and post-molt growth stages and proteomic investigation of barnacle secretions. While no significant difference was found in the expression of cement proteins genes at pre- and post-molting stages, expression levels were highly elevated in the sub-mantle tissue (where the cement glands are located) compared to the main barnacle body. We report the discovery of a novel 114kD cement protein, which is identified in material secreted onto various surfaces by adult barnacles and with the encoding gene highly expressed in the sub-mantle tissue. Further differential gene expression analysis of the sub-mantle tissue samples reveals a limited number of genes highly expressed in pre-molt samples with a range of functions including cuticular development, biominerialization, and proteolytic activity. Conclusions The expression of cement protein genes appears to remain constant through the molt cycle and is largely confined to the sub-mantle tissue. Our results reveal a novel and potentially prominent protein to the mix of cement-related components in A. amphitrite. Despite the lack of a complete genome, sample collection allowed for extended transcriptomic analysis of pre- and post-molt barnacle samples and identified a number of highly-expressed genes. Our results highlight the complexities of this sessile marine organism as it grows via molt cycles and increases the area over which it exhibits robust adhesion to its substrate.http://deepblue.lib.umich.edu/bitstream/2027.42/115487/1/12864_2015_Article_2076.pd

    Insertion of the Liquid Crystal 5CB into Monovacancy Graphene

    No full text
    Interfacial interactions between liquid crystal (LC) and two-dimensional (2D) materials provide a platform to facilitate novel optical and electronic material properties. These interactions are uniquely sensitive to the local energy landscape of the atomically thick 2D surface, which can be strongly influenced by defects that are introduced, either by design or as a byproduct of fabrication processes. Herein, we present density functional theory (DFT) calculations of the LC mesogen 4-cyan-4′-pentylbiphenyl (5CB) on graphene in the presence of a monovacancy (MV-G). We find that the monovacancy strengthens the binding of 5CB in the planar alignment and that the structure is lower in energy than the corresponding homeotropic structure. However, if the molecule is able to approach the monovacancy homeotropically, 5CB undergoes a chemical reaction, releasing 4.5 eV in the process. This reaction follows a step-by-step process gradually adding bonds, inserting the 5CB cyano group into MV-G. We conclude that this irreversible insertion reaction is likely spontaneous, potentially providing a new avenue for controlling both LC behavior and graphene properties

    Multifunctional Liquid Crystal Nanoparticles for Intracellular Fluorescent Imaging and Drug Delivery

    No full text
    A continuing goal of nanoparticle (NP)-mediated drug delivery (NMDD) is the simultaneous improvement of drug efficacy coupled with tracking of the intracellular fate of the nanoparticle delivery vehicle and its drug cargo. Here, we present a robust multifunctional liquid crystal NP (LCNP)-based delivery system that affords facile intracellular fate tracking coupled with the efficient delivery and modulation of the anticancer therapeutic doxorubicin (Dox), employed here as a model drug cargo. The LCNPs consist of (1) a liquid crystal cross-linking agent, (2) a homologue of the organic chromophore perylene, and (3) a polymerizable surfactant containing a carboxylate headgroup. The NP core provides an environment to both incorporate fluorescent dye for spectrally tuned particle tracking and encapsulation of amphiphilic and/or hydrophobic agents for intracellular delivery. The carboxylate head groups enable conjugation to biologicals to facilitate the cellular uptake of the particles. Upon functionalization of the NPs with transferrin, we show the ability to differentially label the recycling endocytic pathway in HEK 293T/17 cells in a time-resolved manner with minimal cytotoxicity and with superior dye photostability compared to traditional organic fluorophores. Further, when passively loaded with Dox, the NPs mediate the rapid uptake and subsequent sustained release of Dox from within endocytic vesicles. We demonstrate the ability of the LCNPs to simultaneously serve as both an efficient delivery vehicle for Dox as well as a modulator of the drug’s cytotoxicity. Specifically, the delivery of Dox as a LCNP conjugate results in a ∼40-fold improvement in its IC<sub>50</sub> compared to free Dox in solution. Cumulatively, our results demonstrate the utility of the LCNPs as an effective nanomaterial for simultaneous cellular imaging, tracking, and delivery of drug cargos

    Electrically Induced Twist in Smectic Liquid–Crystalline Elastomers

    No full text
    As an approach for electrically controllable actuators, we prepare elastomers of chiral smectic-A liquid crystals, which have an electroclinic effect, i.e., molecular tilt induced by an applied electric field. Surprisingly, our experiments find that an electric field causes a rapid and reversible twisting of the film out of the plane, with a helical sense that depends on the sign of the field. To explain this twist, we develop a continuum elastic theory based on an asymmetry between the front and back of the film. We further present finite-element simulations, which show the dynamic shape change

    Lipid Raft-Mediated Membrane Tethering and Delivery of Hydrophobic Cargos from Liquid Crystal-Based Nanocarriers

    No full text
    A main goal of bionanotechnology and nanoparticle (NP)-mediated drug delivery (NMDD) continues to be the development of novel biomaterials that can controllably modulate the activity of the NP-associated therapeutic cargo. One of the desired subcellular locations for targeted delivery in NMDD is the plasma membrane. However, the controlled delivery of hydrophobic cargos to the membrane bilayer poses significant challenges including cargo precipitation and lack of specificity. Here, we employ a liquid crystal NP (LCNP)-based delivery system for the controlled partitioning of a model dye cargo from within the NP core into the plasma membrane bilayer. During synthesis of the NPs, the water-insoluble model dye cargo, 3,3′-dioctadecyloxacarbocyanine perchlorate (DiO), was efficiently incorporated into the hydrophobic LCNP core as confirmed by multiple spectroscopic analyses. Conjugation of a PEGylated cholesterol derivative to the NP surface (DiO-LCNP-PEG-Chol) facilitated the localization of the dye-loaded NPs to lipid raft microdomains in the plasma membrane in HEK 293T/17 cell. Analysis of DiO cellular internalization kinetics revealed that when delivered as a LCNP-PEG-Chol NP, the half-life of DiO membrane residence time (30 min) was twice that of free DiO (DiO<sub>free</sub>) (15 min) delivered from bulk solution. Time-resolved laser scanning confocal microscopy was employed to visualize the passive efflux of DiO from the LCNP core and its insertion into the plasma membrane bilayer as confirmed by Förster resonance energy transfer (FRET) imaging. Finally, the delivery of DiO as a LCNP-PEG-Chol complex resulted in the attenuation of its cytotoxicity; the NP form of DiO exhibited ∼30–40% less toxicity compared to DiO<sub>free</sub>. Our data demonstrate the utility of the LCNP platform as an efficient vehicle for the combined membrane-targeted delivery and physicochemical modulation of molecular cargos using lipid raft-mediated tethering
    • …
    corecore