47 research outputs found

    Mycoplasma hominis variable adherence-associated antigen: a major adhesin and highly variable surface membrane protein

    Get PDF
    Mycoplasma hominis is a member of the genus mycoplasma and has only been isolated from humans. It is most frequently isolated from the urogenital tract in the absence of symptoms, but has been isolated from wounds, brain abscess, inflamed joints, blood and placenta from pregnancy with adverse outcomes (especially preterm birth and occasionally term stillbirth). Controversy surrounds whether this organism is a commensal or a pathogen; however, Mycoplasma hominis has been shown to induce preterm birth and foetal lung injury in an experimental primate model as a sole pathogen. These bacteria are known to exist as a parasitic infection, due to a number of missing synthetic and metabolism pathway enzymes from their minimal genome; therefore, the ability to adhere to host cells is important. Here we provide a review that clarifies the different nomenclature (variable adherence-associated antigen and P50) that has been used to investigate the major surface adhesin for this organism, as well as reported mechanisms responsible for turning off its expression. Variation in the structure of this protein can be used to separate strains into six categories, a method that we were able to use to distinguish and characterise 12 UK strains isolated from between 1983 and 2012. We propose that the Vaa should be used in further investigations to determine if commensal populations and those that are associated with disease utilise different forms of this adhesin, as this is under-studied and identification of pathogenic determinants is overdue for this organism

    Relationship of Proteinases and Proteinase Inhibitors with Microbial Presence in Chronic Lung Disease of Prematurity

    Get PDF
    Background: A proteolytic imbalance has been implicated in the development of “classical” chronic lung disease of prematurity (CLD). However, in “new” CLD this pattern has changed. This study examines the longitudinal relationship between neutrophil proteinases and their inhibitors in ventilated preterm infants and their relationship to microbial colonisation. Methods: Serial bronchoalveolar lavage fluid was obtained from ventilated newborn preterm infants. Neutrophil elastase (NE) activity, cell counts, metalloproteinase (MMP)-9, MMP-9/TIMP-1 complex, SerpinB1 concentration and percentage of SerpinB1 and α1-antitrypsin (AAT) in complex with elastase were measured. The presence of microbial genes was examined using PCR for 16S rRNA genes. Results: Statistically more infants who developed CLD had NE activity in at least one sample (10/20) compared with infants with resolved respiratory distress syndrome (RDS) (2/17). However, NE activity was present in a minority of samples, occurring as episodic peaks. Peak levels of MMP-9, MMP-9/TIMP-1 complex, percentage of AAT and SerpinB1 in complex and cell counts were all statistically greater in infants developing CLD than in infants with resolved RDS. Peak values frequently occurred as episodic spikes and strong temporal relationships were noted between all markers. The peak values for all variables were significantly correlated to each other. The presence of bacterial 16S rRNA genes was associated with the development of CLD and with elevated elastase and MMP-9. Conclusion: NE activity and MMP-9 appear to be important in the development of “new” CLD with both proteinase and inhibitor concentrations increasing episodically, possibly in response to postnatal infection

    Compensatory mutations modulate the competitiveness and dynamics of plasmid-mediated colistin resistance in Escherichia coli clones

    Get PDF
    The emergence of mobile colistin resistance (mcr) threatens to undermine the clinical efficacy of the last antibiotic that can be used to treat serious infections caused by Gram-negative pathogens. Here we measure the fitness cost of a newly discovered MCR-3 using in vitro growth and competition assays. mcr-3 expression confers a lower fitness cost than mcr-1, as determined by competitive ability and cell viability. Consistent with these findings, plasmids carrying mcr-3 have higher stability than mcr-1 plasmids across a range of Escherichia coli strains. Crucially, mcr-3 plasmids can stably persist, even in the absence of colistin. Recent compensatory evolution has helped to offset the cost of mcr-3 expression, as demonstrated by the high fitness of mcr-3.5 as opposed to mcr-3.1. Reconstructing all of the possible evolutionary trajectories from mcr-3.1 to mcr-3.5 reveals a complex fitness landscape shaped by negative epistasis between compensatory and neutral mutations. Our findings highlight the importance of fitness costs and compensatory evolution in driving the dynamics and stability of mobile colistin resistance in bacterial populations, and they highlight the need to understand how processes (other than colistin use) impact mcr dynamics

    Decay-accelerating factor expression in the rat kidney is restricted to the apical surface of podocytes

    Get PDF
    Decay-accelerating factor expression in the rat kidney is restricted to the apical surface of podocytes.BackgroundDecay-accelerating factor (DAF) has inhibitory activity toward complement C3 and C5 convertases. DAF is present in human glomeruli and on cultured human glomerular visceral epithelial cells (GEC). We studied the distribution and function of rat DAF.MethodsFunction-neutralizing antibodies (Abs) were raised against DAF. The distribution of DAF in vivo was determined by immunoelectron microscopy. Functional studies were performed in cultured GEC and following IV injection of anti-DAF Abs into rats.ResultsDAF was present exclusively on the apical surfaces of GEC, and was not present on the basal surfaces of GEC, nor other glomerular or kidney cells. DAF was functionally active on cultured GEC, and served to limit complement activation in concert with CD59, an inhibitor of C5b-9 formation. Upon injection into normal rats, anti-DAF F(ab′)2 Abs bound to GEC in vivo, yet there was no evidence for complement activation and animals did not develop abnormal albuminuria. Anti-megalin complement-activating IgG Abs were “planted” on GEC, which activated complement as evidenced by the presence of C3d on GEC. Attempts to inhibit DAF function with anti-DAF Abs did not affect the quantity of complement activation by these anti-megalin Abs, nor did it lead to development of abnormal albuminuria. In contrast, in the puromycin aminonucleoside model of GEC injury and proteinuria, anti-DAF Abs slowed the recovery from renal failure that occurs in this model.ConclusionIn cultured rat GEC, DAF is an effective complement regulator. In vivo, DAF is present on GEC apical surfaces. Yet, it appears that DAF is not essential to prevent complement activation from occurring under normal circumstances and in those cases in which complement-activating Abs are present on the basal surfaces of GEC in vivo. However, in proteinuric conditions, DAF appears to be protective to GEC

    Mycoplasma pneumoniae infections, 11 countries in Europe and Israel, 2011 to 2016

    Get PDF
    Background: Mycoplasma pneumoniae is a leading cause of community-acquired pneumonia, with large epidemics previously described to occur every 4 to 7 years. Aim: To better understand the diagnostic methods used to detect M. pneumoniae; to better understand M. pneumoniae testing and surveillance in use; to identify epidemics; to determine detection number per age group, age demographics for positive detections, concurrence of epidemics and annual peaks across geographical areas; and to determine the effect of geographical location on the timing of epidemics. Methods: A questionnaire was sent in May 2016 to Mycoplasma experts with national or regional responsibility within the ESCMID Study Group for Mycoplasma and Chlamydia Infections in 17 countries across Europe and Israel, retrospectively requesting details on M. pneumoniae-positive samples from January 2011 to April 2016. The Moving Epidemic Method was used to determine epidemic periods and effect of country latitude across the countries for the five periods under investigation. Results: Representatives from 12 countries provided data on M. pneumoniae infections, accounting for 95,666 positive samples. Two laboratories initiated routine macrolide resistance testing since 2013. Between 2011 and 2016, three epidemics were identified: 2011/12, 2014/15 and 2015/16. The distribution of patient ages for M. pneumoniae-positive samples showed three patterns. During epidemic years, an association between country latitude and calendar week when epidemic periods began was noted. Conclusions: An association between epidemics and latitude was observed. Differences were noted in the age distribution of positive cases and detection methods used and practice. A lack of macrolide resistance monitoring was noted

    The Kaposi's sarcoma-associated herpesvirus complement control protein (KCP) binds to heparin and cell surfaces via positively charged amino acids in CCP1-2.

    Get PDF
    The Kaposi's, sarcoma-associated herpesvirus (KSHV) complement control protein (KCP) inhibits the human complement system, and is similar in structure and function to endogenous complement inhibitors. Other inhibitors such as C4d-binding protein and factor H, as well as the viral homologue vaccinia virus complement control protein are known to bind heparin and, for the two latter, also to glycosaminoglycans at the surface of cells. We report here that KCP also binds to heparin at physiological ionic strength. With help of site directed mutagenesis, positively charged amino acids in the two N-terminal complement control protein (CCP) domains 1-2 were found to be necessary for heparin binding. In silico molecular docking of heparin to KCP confirmed the experimental data, and further explored the heparin binding site. enabling us to present a model of the KCP-heparin interaction. Furthermore, the docking analysis also yielded insights of the KCP structure, by indicating that the angle between CCP domains 1-2 during the initial binding of heparin is more extended than in the model we have previously presented. We also found that KCP binds to heparan sulfate and weakly to glycosaminoglycans at the surface of cells. This might indicate that KCP at the Surface of viral particles aids in the primary attachment to the target cells, which is known to involve binding to heparan sulfate. Therefore. the present study contributes to the knowledge of heparin-protein interactions in general its well as to the understanding of the biology of KSHV. (c) 2005 Elsevier Ltd. All rights reserved

    Viral heparin-binding complement inhibitors--a recurring theme.

    No full text
    corecore