382 research outputs found

    The Green Bank North Celestial Cap Pulsar Survey. IV: Four New Timing Solutions

    Get PDF
    We present timing solutions for four pulsars discovered in the Green Bank Northern Celestial Cap (GBNCC) survey. All four pulsars are isolated with spin periods between 0.26 \,s and 1.84 \,s. PSR J0038βˆ’-2501 has a 0.26 \,s period and a period derivative of 7.6Γ—10βˆ’19 s sβˆ’1{7.6} \times {10}^{-19}\,{\rm s\,s}^{-1}, which is unusually low for isolated pulsars with similar periods. This low period derivative may be simply an extreme value for an isolated pulsar or it could indicate an unusual evolution path for PSR J0038βˆ’-2501, such as a disrupted recycled pulsar (DRP) from a binary system or an orphaned central compact object (CCO). Correcting the observed spin-down rate for the Shklovskii effect suggests that this pulsar may have an unusually low space velocity, which is consistent with expectations for DRPs. There is no X-ray emission detected from PSR J0038βˆ’-2501 in an archival swift observation, which suggests that it is not a young orphaned CCO. The high dispersion measure of PSR J1949+3426 suggests a distance of 12.3 \,kpc. This distance indicates that PSR J1949+3426 is among the most distant 7% of Galactic field pulsars, and is one of the most luminous pulsars.Comment: 7 pages, 5 figure

    Searching for gravitational wave bursts from cosmic string cusps with the Parkes Pulsar Timing Array

    Full text link
    Cosmic strings are potential gravitational wave (GW) sources that can be probed by pulsar timing arrays (PTAs). In this work we develop a detection algorithm for a GW burst from a cusp on a cosmic string, and apply it to Parkes PTA data. We find four events with a false alarm probability less than 1%. However further investigation shows that all of these are likely to be spurious. As there are no convincing detections we place upper limits on the GW amplitude for different event durations. From these bounds we place limits on the cosmic string tension of G mu ~ 10^{-5}, and highlight that this bound is independent from those obtained using other techniques. We discuss the physical implications of our results and the prospect of probing cosmic strings in the era of Square Kilometre Array (SKA).Comment: Accepted for publication by MNRA

    The Green Bank Northern Celestial Cap Pulsar Survey II: The Discovery and Timing of Ten Pulsars

    Full text link
    We present timing solutions for ten pulsars discovered in 350 MHz searches with the Green Bank Telescope. Nine of these were discovered in the Green Bank Northern Celestial Cap survey and one was discovered by students in the Pulsar Search Collaboratory program in analysis of drift-scan data. Following discovery and confirmation with the Green Bank Telescope, timing has yielded phase-connected solutions with high precision measurements of rotational and astrometric parameters. Eight of the pulsars are slow and isolated, including PSR J0930βˆ’-2301, a pulsar with nulling fraction lower limit of ∼\sim30\% and nulling timescale of seconds to minutes. This pulsar also shows evidence of mode changing. The remaining two pulsars have undergone recycling, accreting material from binary companions, resulting in higher spin frequencies. PSR J0557βˆ’-2948 is an isolated, 44 \rm{ms} pulsar that has been partially recycled and is likely a former member of a binary system which was disrupted by a second supernova. The paucity of such so-called `disrupted binary pulsars' (DRPs) compared to double neutron star (DNS) binaries can be used to test current evolutionary scenarios, especially the kicks imparted on the neutron stars in the second supernova. There is some evidence that DRPs have larger space velocities, which could explain their small numbers. PSR J1806+2819 is a 15 \rm{ms} pulsar in a 44 day orbit with a low mass white dwarf companion. We did not detect the companion in archival optical data, indicating that it must be older than 1200 Myr.Comment: 9 pages, 5 figure

    The NANOGrav 11-Year Data Set: Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries

    Full text link
    Observations indicate that nearly all galaxies contain supermassive black holes (SMBHs) at their centers. When galaxies merge, their component black holes form SMBH binaries (SMBHBs), which emit low-frequency gravitational waves (GWs) that can be detected by pulsar timing arrays (PTAs). We have searched the recently-released North American Nanohertz Observatory for Gravitational Waves (NANOGrav) 11-year data set for GWs from individual SMBHBs in circular orbits. As we did not find strong evidence for GWs in our data, we placed 95\% upper limits on the strength of GWs from such sources as a function of GW frequency and sky location. We placed a sky-averaged upper limit on the GW strain of h0<7.3(3)Γ—10βˆ’15h_0 < 7.3(3) \times 10^{-15} at fgw=8f_\mathrm{gw}= 8 nHz. We also developed a technique to determine the significance of a particular signal in each pulsar using ``dropout' parameters as a way of identifying spurious signals in measurements from individual pulsars. We used our upper limits on the GW strain to place lower limits on the distances to individual SMBHBs. At the most-sensitive sky location, we ruled out SMBHBs emitting GWs with fgw=8f_\mathrm{gw}= 8 nHz within 120 Mpc for M=109 MβŠ™\mathcal{M} = 10^9 \, M_\odot, and within 5.5 Gpc for M=1010 MβŠ™\mathcal{M} = 10^{10} \, M_\odot. We also determined that there are no SMBHBs with M>1.6Γ—109 MβŠ™\mathcal{M} > 1.6 \times 10^9 \, M_\odot emitting GWs in the Virgo Cluster. Finally, we estimated the number of potentially detectable sources given our current strain upper limits based on galaxies in Two Micron All-Sky Survey (2MASS) and merger rates from the Illustris cosmological simulation project. Only 34 out of 75,000 realizations of the local Universe contained a detectable source, from which we concluded it was unsurprising that we did not detect any individual sources given our current sensitivity to GWs.Comment: 10 pages, 11 figures. Accepted by Astrophysical Journal. Please send any comments/questions to S. J. Vigeland ([email protected]

    Giant pulses from J1823-3021A observed with the MeerKAT telescope

    Get PDF
    The millisecond pulsar J1823-3021A is a very active giant pulse emitter in the globular cluster NGC 6624. New observations with the MeerKAT radio telescope have revealed 14350 giant pulses over 5 hours of integration time, with an average wait time of about 1 second between giant pulses. The giant pulses occur in phases compatible with the ordinary radio emission, follow a power-law distribution with an index of -2.63 Β±\pm 0.02 and contribute 4 percent of the total integrated flux. The spectral index of the giant pulses follows a Gaussian distribution centered around -1.9 with a standard deviation of 0.6 and is on average flatter than the integrated emission, which has a spectral index of -2.81 Β±\pm 0.02. The waiting times between the GPs are accurately described by a Poissonian distribution, suggesting that the time of occurrence of a GP is independent from the times of occurrence of other GPs. 76 GPs show multiple peaks within the same rotation, a rate that is also compatible with the mutual independence of the GP times of occurrence. We studied the polarization properties of the giant pulses finding, on average, linear polarization only at the 1 percent level and circular polarization at the 3 percent level, similar to the polarization percentages of the total integrated emission. In 4 cases it was possible to measure the RM of the GPs which are highly variable and, in two cases, is inconsistent with the mean RM of the total integrated pulsar signal.Comment: Accepted for publication in MNRAS. 8 Pages, 11 Figure
    • …
    corecore