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ABSTRACT

We present timing solutions for four pulsars discovered in the Green Bank Northern Celestial

Cap (GBNCC) survey. All four pulsars are isolated with spin periods between 0.26 s and 1.84 s.

PSR J0038−2501 has a 0.26 s period and a period derivative of 7.6 × 10−19 s s−1, which is unusually

low for isolated pulsars with similar periods. This low period derivative may be simply an extreme

value for an isolated pulsar or it could indicate an unusual evolution path for PSR J0038−2501, such

as a disrupted recycled pulsar (DRP) from a binary system or an orphaned central compact object

(CCO). Correcting the observed spin-down rate for the Shklovskii effect suggests that this pulsar may

have an unusually low space velocity, which is consistent with expectations for DRPs. There is no

X-ray emission detected from PSR J0038−2501 in an archival Swift observation, which suggests that

it is not a young orphaned CCO. The high dispersion measure of PSR J1949+3426 suggests a distance

of 12.3 kpc. This distance indicates that PSR J1949+3426 is among the most distant 7% of Galactic

field pulsars, and is one of the most luminous pulsars.
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1. INTRODUCTION

The Green Bank North Celestial Cap (GBNCC) sur-

vey (Stovall et al. 2014; Lynch et al. 2018; Kawash et al.

2018) is searching for pulsars and transient radio sig-

nals at 350 MHz in the declination (δ) range available

to the Robert C. Byrd Green Bank Telescope (GBT),

δ > −40◦. Scientific objectives for the GBNCC sur-

vey include characterization of the Galactic pulsar pop-

ulation as well as finding high precision millisecond

pulsars (MSPs) suitable for inclusion in a pulsar tim-

ing array (PTA), which will enable the detection of

nanohertz-frequency gravitational waves (GWs; e.g. Ar-

zoumanian et al. 2018). By surveying the entire sky

at low frequencies we are especially sensitive to nearby,

low-luminosity and/or steep-spectrum pulsars; see Sto-

vall et al. (2014) for further comparison of GBNCC’s

sensitivity with other pulsar surveys. Note that the sen-

sitivity of GBNCC also allows detection of more distant,

higher luminosity pulsars as evidenced in the detection

of J1949+3426 reported in this paper. As of 2018, GB-

NCC survey observations are approximately 80 percent

complete, with the data collection expected to conclude

by 2020. As of 2018 October, 161 pulsars, including 20

millisecond pulsars have been discovered by the GBNCC

survey. Initial GBNCC survey results were reported in

Stovall et al. (2014), while Kawash et al. (2018) dis-

cussed timing results for 10 pulsars and Lynch et al.

(2018) reported timing results for an additional 45 pul-

sars. This paper reports results from analysis of tim-

ing observations of four pulsars discovered in the GB-

NCC survey. The University of Wisconsin–Milwaukee

provided an opportunity for undergraduate students to

participate in course-based research by processing data

from observations on the four pulsars to develop timing

solutions and to characterize the pulsars based on their

properties1. In the discussion below, we give quantities

and distances computed using both the Galactic elec-

tron density model of Yao et al. (2017, YMW16) and

that of Cordes & Lazio (2002, NE2001).

2. OBSERVATIONS & TIMING ANALYSIS

The discovery observations for the new discoveries pre-

sented here took place between 2011 and 2015 and used

1 The pulsar timing analysis presented here is the culmination
of efforts by the six lead authors, who participated in a First
Year Research Experiences (FYRE) course held at the University
of Wisconsin–Milwaukee during the Fall semester of 2017, PHYS
194: Clocking Dead Stars with Radio Telescopes.

the GBT operating at a center frequency of 350 MHz

and nominal bandwidth of 100 MHz, with dwell times

of 120 s; see Stovall et al. (2014) for a description of the

methodology.

The search processing took place on a computer clus-

ter operated by Compute Canada, with candidates an-

alyzed via the CyberSKA interface2. The timing obser-

vations for the four pulsars presented in this paper used

the same center frequency and bandwidth, with typical

durations of 3.5–6 min. The Green Bank Ultimate Pul-

sar Processing Instrument (GUPPI; DuPlain et al. 2008)

was used for both discovery and timing observations to

record data every 81.92µs with 4096 frequency channels.

Data were processed using PRESTO (Ransom et al. 2002)

for initial spin period refinement, then PSRCHIVE (Hotan

et al. 2004; van Straten et al. 2012) to process individual

timing scans and calculate times of arrival (TOAs).

An ephemeris was created to save the preliminary tim-

ing parameters. Using the dispersion measure (DM)

found from the discovery observations, the files from all

timing observations were averaged from 4096 to 256 fre-

quency channels using pam and each file was examined

using pazi to remove radio frequency interference (RFI).

Figure 1 shows the composite profiles based on all tim-

ing observations for each pulsar. Standard profiles were

created for each pulsar using paas on files with a high

signal-to-noise ratio. All timing files were then averaged

in frequency again using pam to one or more frequen-

cies and three sub-integrations prior to using pat and

the standard profiles to generate TOAs; the number of

frequency sub-bands was one for observations with rel-

atively low signal-to-noise ratio and two or three for ob-

servations with higher signal-to-noise ratio. Fitting the

TOAs was performed with TEMPO2 (Manchester et al.

2015; Hobbs et al. 2006), finding a timing solution in-

cluding spin period (P ), period derivative (Ṗ ), and po-

sition. We also included DM as a free parameter for

pulsars for which TOAs were available at multiple fre-

quencies. Where not available from TEMPO2, DM errors

were determined using the PSRCHIVE command pdmp.

Parameter uncertainties quoted in Table 1 are 1-σ uncer-

tainties on measured TEMPO2 fit parameters, but a global

multiplicative error factor (EFAC) has been applied to

each TOA error such that the resulting reduced χ2 value

is one after fitting. Discovery observations were included

in the timing analysis for each pulsar after similar pro-

2 https://ca.cyberska.org/

https://ca.cyberska.org/
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Figure 1. Normalized pulse profiles for observations
at 350 MHz of the four pulsars timed here. We show
PSRs J0038−2501 (upper left), J1916−2939 (upper right),
J1949+3426 (lower left), and J2355+2246 (lower right). The
total amount of observation time is noted in the upper right-
hand corner for each summed profile.

cessing using PRESTO. After fitting model parameters,

the profiles for TOAs with relatively large residuals were

each examined visually to determine whether each was

a significant detection. TOAs with no clear detection

were deleted prior to the final model fit. The final TOA

residuals are plotted in Figure 2. We confirmed that the

discovery TOAs could be reliably phase-connected with

the timing TOAs by ensuring that the phase uncertainty

extrapolated to the time of the discovery observations

was much less than 0.1 cycle.

Taken together, the data span of the combined discov-

ery and timing data-sets are at least two years for each

pulsar, so that covariances between spin-down and po-

sition are minimized. The final timing models are given

in Table 1.

The locations on a P − Ṗ diagram are shown in Fig-
ure 3. Table 1 also includes the DM and calculated

distance to each pulsar as well as the characteristic age,

and calculated pseudo-luminosity for each pulsar. The

flux density S350 and pseudo luminosity L350 = S350×d2
values reported in Table 1 were calculated for each of the

timed pulsars using the signal-to-noise (S/N) from dis-

covery observations as in Stovall et al. (2014), and the

search sensitivity (Lorimer & Kramer 2012)

Smin =
(S/N)Tsys

G
√
np tint ∆f

√
W

P −W
, (1)

where Tsys is the system temperature as listed in Table 1,

G = 2 K Jy−1 is the telescope gain, np = 2 is the number

of polarizations summed, tint = 120 s is the integration

time, ∆f = 80 MHz is the effective bandwidth, W is

the width of the pulse as detected by the system, and P
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Figure 2. TOA residuals for three sub-integrations per
epoch and one to three frequency sub-bands for each of
the four pulsars timed here. We show (top to bot-
tom) PSRs J0038−2501, J1916−2939, J1949+3426, and
J2355+2246. The dense timing observations are apparent,
with relatively large gaps that connect back to the discovery
observations. Error bars reflect 1-σ uncertainties on TOAs.

is the spin period. Tsys includes sky temperatures Tsky
listed in Table 1 as determined for the direction of each

pulsar using the global sky model of de Oliveira-Costa

et al. (2008) calculated at 350 MHz.

3. NOTES ON INDIVIDUAL PULSARS

3.1. PSR J0038−2501

As can be seen in Figure 3, the Ṗ and P for

PSR J0038−2501 are low compared to typical non-

recycled pulsars, implying a relatively low surface mag-

netic field strength (Bs). It was also the closest of the

four timed pulsars at 600 pc (from YMW16; 320 pc from

NE2001).
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Table 1. Timing Solutions and Derived Parameters

Parameter J0038−2501 J1916−2939 J1949+3426 J2355+2246

Right Ascension (J2000) 00h38m10.s264(10) 19h16m32.s701(5) 19h49m13.s671(6) 23h55m49.s8(3)

Declination (J2000) −25◦01′30.′′73(2) −29◦39′27.′′8(3) +34◦26′33.′′89(8) +22◦46′17(8)′′

Galactic Longitude (deg) 67.42 8.25 69.72 106.53

Galactic Latitude (deg) −86.35 −18.07 4.29 −38.32

Dispersion Measure (pc cm−3) 5.710(3) 38.34(11) 228.0(3) 23.1(7)

NE2001 Distance (kpc) 0.32 1.2 9.8 1.2

YMW16 Distance (kpc) 0.60 1.6 12.3 2.2

Spin Period (s) 0.2569264575329(17) 1.248616964290(3) 0.3885391675859(14) 1.8409859072(3)

Period Derivative (10−17 s s−1) 0.0760(6) 124.41(4) 20.219(8) 378(4)

Epoch (MJD) 57474 57346 56921 57102

Span of Timing Data (MJD) 56774 – 58175 56901 – 57791 56051 – 57791 56477 – 57666

Number of TOAs 88 91 42 34

RMS Fit Residual (µs) 120 422 494 3061

EFAC 1.3 0.81 0.91 1.5

Characteristic Age (Myr) 5400 16 30 7.7

Surface Magnetic Field (109 G) 14 1300 280 2700

Spin-down Luminosity (1030 ergs s−1) 1.8 25 140 9.6

Signal to Noise 81 18 23 12

Pulse Width, W10 (s) 0.015 0.061 0.030 0.115

Tsky (K) 27 70 77 28

Tsys (K) 73 116 123 74

S350 (mJy) 3.7 2.2 3.7 0.9

L350 (mJy kpc2) 1.3 6.4 570 4.1

Note—Numbers in parentheses are the 1-σ errors in the last digit quoted after scaling TOA uncertainties by EFAC. The signal
to noise values are for discovery observations after RFI was removed. Distance is calculated from DM using both the NE2001
(Cordes & Lazio 2002) and YMW16 (Yao et al. 2017) Galactic electron density models. Sky temperatures are calculated using
de Oliveira-Costa et al. (2008). The flux densities and pseudo-luminosities are calculated using Equation 1. The solar system
ephemeris used was DE430. The time scale used was TT(TAI).

Some pulsars with similar timing properties (P >

20 ms and Bs < 3 × 1010 G) are described as disrupted

recycled pulsars (DRPs; Belczynski et al. 2010), where

it is thought that the companion exploded in a super-

nova that unbound the system, stopping the recycling

process and leaving the pulsar with intermediate proper-

ties between typical isolated pulsars and recycled MSPs

(Gotthelf et al. 2013). However, there is overlap between

the properties of more traditional isolated pulsars and

the DRPs. Belczynski et al. (2010) estimates that 0.3%

of isolated non-recycled pulsars may have Ṗ and Bs val-

ues similar to DRPs, which amounts to ∼ 4 pulsars out

of the total population compared to 12 DRP considered

in that paper.

An alternative explanation for the low magnetic field

properties of PSR J0038−2501 is that it could be an or-

phaned central compact object (CCO). CCOs are young

pulsars with low magnetic fields that are found within or

near supernova remnants (SNRs; Gotthelf et al. 2013).

The characteristic ages of CCOs calculated from their

spin-down rates do not match the known ages of their

associated SNRs. It is unclear how CCOs evolve after

they are formed. Gotthelf et al. (2013) proposed that

CCO descendants may have similar timing properties to

the DRP pulsars, but would be expected to be younger

and therefore may have visible thermal X-ray emission

for up to ∼ 105 yrs. Gotthelf et al. (2013) and Luo

et al. (2015) searched known pulsars classified as DRPs

(using same criteria as in Belczynski et al. 2010) for X-

ray emission with no detections. We searched archival

observations and found a 6 ks Neil Gehrels Swift Ob-

servatory (Swift) observation from 2009 November 16

that included the location of PSR J0038−2501. Figure

4 shows the Swift observation, which has 0 counts in a

circle of radius 18′′, consistent with the background ex-

pectation of 1.4 ± 1.2 counts determined from the back-
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Figure 3. P vs. Ṗ for the four pulsars discussed here (red
stars, labeled) relative to known isolated pulsars (blue dots)
and binary pulsars (green squares) from the ATNF Pulsar
Catalog, Version 1.58 (Manchester et al. 2005, 2016). The
disrupted recycled pulsar (DRPs) from Gotthelf et al. (2013)
are shown as black × symbols. Constant characteristic age
in years is shown by grey dot-dashed lines. Constant inferred
surface dipole magnetic field is shown by grey dashed lines.

ground rate of 0.0014 ± 0.00005 counts arcsec−2. Using

Gehrels (1986) we set an upper limit of < 3 counts (95%

confidence). Figure 5 compares the X-ray luminosities

of young CCOs and old isolated pulsars with the up-

per limit for the Swift observation as well as upper

limits for candidate DRPs from Gotthelf et al. (2013)

and Luo et al. (2015). The failure to detect sources

for these observations suggests that PSR J0038−2501

and the candidate DRPs are not young (∼ 105 yrs old)

orphaned CCOs. PSR J0038−2501 is the fifth poten-

tial DRP to be discovered in the GBNCC survey af-

ter PSRs J0358+6627, J0557−2948, J1434+7257, and

J2122+5434 (Stovall et al. 2014; Lynch et al. 2018;

Kawash et al. 2018).

The low Ṗ and low estimated distance for PSR J0038−2501

also place limits on its proper motion and transverse

velocity. The observed period derivative for pulsars

includes a component associated with proper motion

determined by the Shklovskii effect (Shklovskii 1970),

calculated with

ṖS =
P V 2

T

c d
, (2)

where VT is the transverse velocity, c is the speed of

light and d is distance to the pulsar. Additional period

derivative components are present due to Galactic ac-

celeration effects as described in Nice & Taylor (1995),

but these components were found to be less than 7% of

the measured period derivative and therefore were not

included for this estimate. Using this calculation and

assuming that the intrinsic Ṗ is greater than 0 (i.e., the

pulsar is spinning down), we limit VT to < 130 km s−1

0h38m30.0s 20.0s 10.0s 00.0s 37m50.0s

-24◦58’

-25◦00’

02’

04’

06’

Right Ascension (J2000)

D
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n

(J
20

00
)

PSR J0038−2501

2MASS J00381473−2459022

2MASS J00380847−2505133

Figure 4. Swift XRT observation from 2009 November 16
centered on the position of PSR J0038−2501. The image
has been smoothed to have a full-width at half-maximum
comparable to the XRT resolution of 18′′. We show circles
at the position of PSR J0038−2501 (green) and two back-
ground point sources (black) from the Two Micron All Sky
Survey (Skrutskie et al. 2006) which we used to verify the
astrometry; the circle diameters are 18′′.

for PSR J0038−2501 (from YMW16; < 90 km s−1 from

NE2001). A relatively low transverse velocity is con-

sistent with the lower expected natal kick velocities for

DRPs (Belczynski et al. 2010), (3-D velocity dispersion

of 170 km s−1 compared to 265 km s−1 for isolated pul-

sars).

3.2. PSR J1949+3426

PSR J1949+3426 has a dispersion measure of 228.0 pc cm−3

which makes it the farthest of the four timed pulsars and

among the top 7% most distant Galactic field pulsars.

The distance determined from the YMW16 model is

12.3 kpc (9.8 kpc from NE2001 model). The pulse pro-

file shown in Figure 1 has a tail resembling profiles that

exhibit scatter broadening as described in Bhat et al.

(2004) which would be consistent with a large distance.

We fit a one-sided exponential function to the pulse pro-

file after the peak in four sub-bands centered at 313, 338,

358, and 389 MHz. We find decay times of 30.1±0.8,

20.1±0.4, 15.7±0.5, and 15.1±0.7 ms, although we note

that this does not account for any intrinsic pulse width

or frequency evolution of the pulse shape. The timescale

decreases with increasing frequency as expected for in-

terstellar pulse broadening, but it should be noted that

the range of frequencies was relatively narrow for this

evaluation. The NE2001 model predicts a much lower
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DM for J0038−2501 using the empirical relationship from He
et al. (2013). The flux was calculated at various tempera-
tures, kT , and converted to a luminosity assuming a distance
of 600 pc. Dashed lines represent equivalent source radii for
blackbody models. DRPs not detected in similar X-ray ob-
servations from Gotthelf et al. (2013) and Luo et al. (2015)
are shown as blue arrows. Luminosities for CCO observa-
tions from Halpern & Gotthelf (2010) are shown as green
squares and for old isolated pulsars B0834+06 (3 Myr) and
B1133+16 (5 Myr) from Gil et al. (2008) as red circles.

pulse broadening timescale of < 1 ms at 350 MHz, while

the YMW16 model predicts a larger timescale of 60 ms.

Additional observations at a higher frequency could help

confirm whether the profile shape is impacted by pulse

broadening. The large distance for PSR J1949+3426

suggests that it must be relatively bright to have been

detected in the GBNCC search. The pseudo-luminosity

(calculated as described in Section 3) is one of the high-

est reported for pulsars discovered by GBNCC (Stovall

et al. 2014).

3.3. PSR J1916−2939

PSR J1916−2939 has properties typical for isolated

non-recycled pulsars with a longer, 1.84 s period and

large period derivative due to a relatively high surface

magnetic field.

3.4. PSR J2355+2246

PSR J2355+2246 also has properties typical for

young, isolated non-recycled pulsars. The signal-to-

noise ratio in the observations was relatively low at

∼ 12. Several TOAs were removed after confirming

that no significant pulse profile was visible. Some ev-

idence of pulse nulling (where the pulsar appears to

turn off for a some numbers of pulses; Backer 1970)

was noted for roughly 30% of the pulses in a 2 minute

discovery observation. We reviewed additional timing

observations for nulling behavior, but were unable to

confirm this behavior because of excess RFI. Additional

observations can confirm whether this pulsar nulls or

not.

4. CONCLUSIONS

In this paper, we report the timing solutions for four

pulsars discovered in the GBNCC survey. The prop-

erties of the timed pulsars are varied indicating differ-

ing evolutionary paths, which supports one of the GB-

NCC objectives of characterizing the pulsar population

to better understand the underlying physical phenom-

ena. PSR J0038−2501 was found to have an unusually

low magnetic field suggesting that it may be a DRP

or possibly an orphaned CCO. An archival Swift X-ray

observation did not find a source at the location, sug-

gesting that PSR J0038−2501 is not a young orphaned

CCO, but it could be an older source. Additional obser-

vations are suggested to determine the proper motion of

PSR J0038−2501 which may help distinguish between

evolutionary models. The farthest of the four pulsars

according to the DM-distance models reported here was

PSR J1949+3426. Calculations indicate that it may be

one of the highest pseudo-luminosity pulsars discovered

in the GBNCC survey. The profile may show evidence

of pulse broadening. Observations at higher frequency

would allow better evaluation of the intrinsic pulse pro-

file and determination of the extent of scattering.
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Facility: GBT, Swift Software: GSM (de Oliveira-Costa et al. 2010),

PRESTO(http://www.cv.nrao.edu/∼sransom/presto/),
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