646 research outputs found

    Large Binocular Telescope view of the atmosphere of GJ1214b

    Get PDF
    The atmospheric composition and vertical structure of the super-Earth GJ1214b has been a subject of debate since its discovery in 2009. Recent studies have indicated that high-altitude clouds might mask the lower layers. However, some data points that were gathered at different times and facilities do not fit this picture, probably because of a combination of stellar activity and systematic errors. We observed two transits of GJ1214b with the Large Binocular Camera, the dual-channel camera at the Large Binocular Telescope. For the first time, we simultaneously measured the relative planetary radius k=Rp/Rk=R_\mathrm{p}/R_\star at blue and red optical wavelengths (B+RB+R), thus constraining the Rayleigh scattering on GJ1214b after correcting for stellar activity effects. To the same purpose, a long-term photometric follow-up of the host star was carried out with WiFSIP at STELLA, revealing a rotational period that is significantly longer than previously reported. Our new unbiased estimates of kk yield a flat transmission spectrum extending to shorter wavelengths, thus confirming the cloudy atmosphere scenario for GJ1214b.Comment: 11 pages, 5 figures, 3 tables. Published in A&A. Minor changes to reflect the published versio

    Deep R-band counts of z~3 Lyman break galaxy candidates with the LBT

    Full text link
    Aims. We present a deep multiwavelength imaging survey (UGR) in 3 different fields, Q0933, Q1623, and COSMOS, for a total area of ~1500arcmin^2. The data were obtained with the Large Binocular Camera on the Large Binocular Telescope. Methods. To select our Lyman break galaxy (LBG) candidates, we adopted the well established and widely used color-selection criterion (U-G vs. G-R). One of the main advantages of our survey is that it has a wider dynamic color range for U-dropout selection than in previous studies. This allows us to fully exploit the depth of our R-band images, obtaining a robust sample with few interlopers. In addition, for 2 of our fields we have spectroscopic redshift information that is needed to better estimate the completeness of our sample and interloper fraction. Results. Our limiting magnitudes reach 27.0(AB) in the R band (5\sigma) and 28.6(AB) in the U band (1\sigma). This dataset was used to derive LBG candidates at z~3. We obtained a catalog with a total of 12264 sources down to the 50% completeness magnitude limit in the R band for each field. We find a surface density of ~3 LBG candidates arcmin^2 down to R=25.5, where completeness is >=95% for all 3 fields. This number is higher than the original studies, but consistent with more recent samples.Comment: in press by A&A, full LBG candidates' catalog will be available in electronic form at the CD

    A long-lasting quiescence phase of the eruptive variable V1118 Ori

    Get PDF
    V1118 Ori is an eruptive variable belonging to the EXor class of Pre-Main Sequence stars whose episodic outbursts are attributed to disk accretion events. Since 2006, V1118 Ori is in the longest quiescence stage ever observed between two subsequent outbursts of its recent history. We present near-infrared photometry of V1118 Ori carried out during the last eight years, along with a complete spectroscopic coverage from 0.35 to 2.5 um. A longterm sampling of V1118 Ori in quiescence has never been done, hence we can benefit from the current circumstance to determine the lowest values (i.e. the zeroes) of the parameters to be used as a reference for evaluating the physical changes typical of more active phases. A quiescence mass accretion rate between 1--3 ×\times 109^{-9} M_{\sun} yr1^{-1} can be derived and the difference with previous determinations is discussed. From line emission and IR colors analysis a visual extinction of 1-2 mag is consistently derived, confirming that V1118 Ori (at least in quiescence) is a low-extinction T Tauri star with a bolometric luminosity of about 2.1 L_{\sun}. An anti-correlation exists between the equivalent width of the emission lines and the underlying continuum. We searched the literature for evaluating whether or not such a behaviour is a common feature of the whole class. The anti-correlation is clearly recognizable for all the available EXors in the optical range (Hβ\beta and Hα\alpha lines), while it is not as much evident in the infrared (Paβ\beta and Brγ\gamma lines). The observed anti-correlation supports the accretion-driven mechanism as the most likely to account for continuum variations.Comment: 6 figures, 5 tables, accepted on Ap

    Real-Time Oil Leakage Detection on Aftermarket Motorcycle Damping System with Convolutional Neural Networks

    Get PDF
    In this work, we describe in detail how Deep Learning and Computer Vision can help to detect fault events of the AirTender system, an aftermarket motorcycle damping system component. One of the most effective ways to monitor the AirTender functioning is to look for oil stains on its surface. Starting from real-time images, AirTender is first detected in the motorbike suspension system, simulated indoor, and then, a binary classifier determines whether AirTender is spilling oil or not. The detection is made with the help of the Yolo5 architecture, whereas the classification is carried out with the help of a suitably designed Convolutional Neural Network, OilNet40. In order to detect oil leaks more clearly, we dilute the oil in AirTender with a fluorescent dye with an excitation wavelength peak of approximately 390 nm. AirTender is then illuminated with suitable UV LEDs. The whole system is an attempt to design a low-cost detection setup. An on-board device, such as a mini-computer, is placed near the suspension system and connected to a full hd camera framing AirTender. The on-board device, through our Neural Network algorithm, is then able to localize and classify AirTender as normally functioning (non-leak image) or anomaly (leak image)

    Wide and deep near-UV (360nm) galaxy counts and the extragalactic background light with the Large Binocular Camera

    Full text link
    Deep multicolour surveys are the main tool to explore the formation and evolution of the faint galaxies which are beyond the spectroscopic limit with the present technology. The photometric properties of these faint galaxies are usually compared with current renditions of semianalytical models to provide constraints on the fundamental physical processes involved in galaxy formation and evolution, namely the mass assembly and the star formation. Galaxy counts over large sky areas in the near-UV band are important because they are difficult to obtain given the low efficiency of near-UV instrumentation, even at 8m class telescopes. A large instrumental field of view helps in minimizing the biases due to the cosmic variance. We have obtained deep images in the 360nm U band provided by the blue channel of the Large Binocular Camera at the prime focus of the Large Binocular Telescope. We have derived over an area of ~0.4 sq. deg. the galaxy number counts down to U=27 in the Vega system (corresponding to U=27.86 in the AB system) at a completeness level of 30% reaching the faintest current limit for this wavelength and sky area. The shape of the galaxy counts in the U band can be described by a double power-law, the bright side being consistent with the shape of shallower surveys of comparable or greater areas. The slope bends over significantly at U>23.5 ensuring the convergence of the contribution by star forming galaxies to the EBL in the near-UV band to a value which is more than 70% of the most recent upper limits derived for this band. We have jointly compared our near-UV and K band counts collected from the literature with few selected hierarchical CDM models emphasizing critical issues in the physical description of the galaxy formation and evolution.Comment: Accepted for publication in A&A. Uses aa.cls, 9 pages, 4 figures. Citations update

    Characterizing faint galaxies in the reionization epoch: LBT confirms two L<0.2L* sources at z=6.4 behind the CLASH/Frontier Fields cluster MACS0717.5+3745

    Get PDF
    We report the LBT/MODS1 spectroscopic confirmation of two images of faint Lyman alpha emitters at z=6.4z=6.4 behind the Frontier Fields galaxy cluster MACSJ0717.5+3745. A wide range of lens models suggests that the two images are highly magnified, with a strong lower limit of mu>5. These are the faintest z>6 candidates spectroscopically confirmed to date. These may be also multiple images of the same z=6.4 source as supported by their similar intrinsic properties, but the lens models are inconclusive regarding this interpretation. To be cautious, we derive the physical properties of each image individually. Thanks to the high magnification, the observed near-infrared (restframe ultraviolet) part of the spectral energy distributions and Ly-alpha lines are well detected with S/N(m_1500)>~10 and S/N(Ly-alpha)~10-15. Adopting mu>5, the absolute magnitudes, M_1500, and Ly-alpha fluxes, are fainter than -18.7 and 2.8x10^(-18)erg/s/cm2, respectively. We find a very steep ultraviolet spectral slope beta=-3.0+/-0.5 (F_lambda=lambda^(beta)), implying that these are very young, dust-free and low metallicity objects, made of standard stellar populations or even extremely metal poor stars (age<~30Myr, E(B-V)=0 and metallicity 0.0-0.2 Z/Zsolar). The objects are compact (< 1 kpc^(2)), and with a stellar mass M* < 10^(8) M_solar. The very steep beta, the presence of the Ly-alpha line and the intrinsic FWHM (<300 km/s) of these newborn objects do not exclude a possible leakage of ionizing radiation. We discuss the possibility that such faint galaxies may resemble those responsible for cosmic reionization.Comment: Accepted by ApJL; 6 pages, 4 figures, 1 table, emulateapj forma

    Understanding light quanta: First quantization of the free electromagnetic field

    Full text link
    The quantization of the electromagnetic field in vacuum is presented without reference to lagrangean quantum field theory. The equal time commutators of the fields are calculated from basic principles. A physical discussion of the commutators suggest that the electromagnetic fields are macroscopic emergent properties of more fundamental physical system: the photons

    The identification of the optical/IR counterpart of the 15.8-s transient X-ray pulsar XTE J1946+274

    Get PDF
    We report on the discovery of the optical/IR counterpart of the 15.8s transient X-ray pulsar XTE J1946+274. We re-analysed archival BeppoSAX observations of XTE J1946+274, obtaining a new refined position (a circle with 22" radius at 90% confidence level). Based on this new position we carried out optical and infra-red (IR) follow-up observations. Within the new error circle we found a relatively optical faint (B=18.6) IR bright (H=12.1) early type reddened star (V--R=1.6). The optical spectra show strong H-alpha and H-beta emission lines. The IR photometric observations of the field confirm the presence of an IR excess for the H-alpha--emitting star (K=11.6, J--H=0.6) which is likely surrounded by a circumstellar envelope. Spectroscopic and photometric data indicate a B0--1V--IVe spectral-type star located at a distance of 8--10kpc and confirm the Be-star/X-ray binary nature of XTE J1946+274.Comment: Accepted for publication on A&A (7 pages and 4 figures
    corecore