9 research outputs found

    Sub-millimeter Tests of the Gravitational Inverse-square Law

    Full text link
    Motivated by a variety of theories that predict new effects, we tested the gravitational 1/r^2 law at separations between 10.77 mm and 137 microns using two different 10-fold azimuthally symmetric torsion pendulums and rotating 10-fold symmetric attractors. Our work improves upon other experiments by up to a factor of about 100. We found no deviation from Newtonian physics at the 95% confidence level and interpret these results as constraints on extensions of the Standard Model that predict Yukawa or power-law forces. We set a constraint on the largest single extra dimension (assuming toroidal compactification and that one extra dimension is significantly larger than all the others) of R <= 160 microns, and on two equal-sized large extra dimensions of R <= 130 microns. Yukawa interactions with |alpha| >= 1 are ruled out at 95% confidence for lambda >= 197 microns. Extra-dimensions scenarios stabilized by radions are restricted to unification masses M >= 3.0 TeV/c^2, regardless of the number of large extra dimensions. We also provide new constraints on power-law potentials V(r)\propto r^{-k} with k between 2 and 5 and on the gamma_5 couplings of pseudoscalars with m <= 10 meV/c^2.Comment: 34 pages, 38 figure

    Detector Description and Performance for the First Coincidence Observations between LIGO and GEO

    Get PDF
    For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial change

    Analogpräparate

    No full text
    corecore