62 research outputs found
Patterns of variability of retinol levels in a harbour porpoise population from an unpolluted environment
Organochlorine compounds (OC) are known to induce vitamin A (retinoids) deficiency in mammals, which may be associated with impairment of immunocompetence, reproduction and growth. This makes retinoids a potentially useful biomarker of organochlorine impact on marine mammals. However, use of retinoids as a biomarker requires knowledge about its intrapopulation patterns of variation in natural conditions, information which is not currently available. We investigated these patterns in a cetacean population living in an unpolluted environment. 100 harbour porpoises Phocoena phocoena from West Greenland were sampled during the 1995 hunting season. Sex, age, morphometrics, nutritive condition, and retinol (following saponification) and OC levels in blubber were determined for each individual. OC levels found were extremely low and therefore considered unlikely to affect the population adversely: mean blubber concentrations, expressed on an extractable basis, were 2.04 (SD = 1.1) ppm for PCBs and 2.76 (SD = 1.66) ppm for tDDT. The mean blubber retinol concentration for the overall population was 59.66 (SD = 45.26) mu g g(-1). Taking into account the high contribution of blubber to body mass, blubber constitutes a significant body site for retinoid deposition in harbour porpoises. Retinol concentrations did not differ significantly between geographical regions or sexes, but they did correlate significantly (p <0.001) with age. Body condition, measured by determining the lipid content of the blubber, did not have a significant effect on retinol levels but the individuals examined were considered to be in an overall good nutritive condition. It is concluded that measurement of retinol concentrations in blubber samples is feasible and has a potential for use as a biomarker of organochlorine exposure in cetaceans. However, in order to do so, biological information, particularly age, is critical for the correct assessment of physiological impac
Effects of subchronic exposure to complex mixtures of dioxin-like and non-dioxin-like polyhalogenated aromatic compounds on thyroid hormone and Vitamin A levels in female sprague-Dawley rats
The aim of this study was to determine the effects of subchronic exposure to complex mixtures of polyhalogenated aromatic hydrocarbons (PHAHs) on the thyroid hormone and retinoid status in female Sprague-Dawley rats and to investigate the predictability of these effects by the toxic equivalency factor (TEF) concept. In the first experiment, the focus was on a complex dioxin-like PHAH mixture, which covered > 90% of the total toxic equivalents (TEQ) present in Baltic herring. In the second experiment, the contribution of non-dioxin-like polychlorinated biphenyls (PCBs) was investigated by testing the commercial PCB mixture Aroclor 1260, its 0-1 ortho and 2-4 ortho fractions and the reconstituted 0-4 ortho fraction. Hepatic retinoid levels were severely decreased (Ο70%) after treatment with the dioxin-like PHAH mixture, similar to the effect of a TEQ equivalent dose of 1 μg 2,3,7,8-TCDD/kg bw/week. However, the TEF concept failed to predict the effect on plasma retinol; a decrease (21%) was observed after treatment with the PHAH mixture, whereas an increase (21%) was found after treatment with TCDD. A more severe decrease of total thyroid hormone in plasma was observed after exposure to the PHAH mixture compared to treatment with TCDD (Ο60% vs. 38%). The discrepancy found between the predicted and observed effects for plasma retinol and thyroid hormone is possibly due to an additional effect of hydroxylated PCBs, formed from metabolizable PCBs present in the PHAH mixture. Aroclor 1260 and its fractions did not significantly alter the retinoid and thyroid hormone status at the dose levels tested, indicating that in case of exposure to complex PCB mixtures at environmental levels, no effects, or at best, only marginal effects can be expected on the retinoid and thyroid hormone status
Single-molecule visualization of fast polymerase turnover in the bacterial replisome
The Escherichia coli DNA replication machinery has been used as a road map to uncover design rules that enable DNA duplication with high efficiency and fidelity. Although the enzymatic activities of the replicative DNA Pol III are well understood, its dynamics within the replisome are not. Here, we test the accepted view that the Pol III holoenzyme remains stably associated within the replisome. We use in vitro single-molecule assays with fluorescently labeled polymerases to demonstrate that the Pol III* complex (holoenzyme lacking the β2 sliding clamp), is rapidly exchanged during processive DNA replication. Nevertheless, the replisome is highly resistant to dilution in the absence of Pol III* in solution. We further show similar exchange in live cells containing labeled clamp loader and polymerase. These observations suggest a concentration-dependent exchange mechanism providing a balance between stability and plasticity, facilitating replacement of replisomal components dependent on their availability in the environment
Поличний сушильний апарат для термолабільних зернових матеріалів
A study was performed to optimize sample preparation and application of three in vitro assays for measuring estrogenic potency in environmental extracts. The three assays applied were an estrogen receptor (ER)-binding assay and two reporter gene effect assays: a yeast estrogen screen (YES) and the ER-mediated chemically activated luciferase gene expression (ER-CALUX) assay. All assays were able to detect estrogenicity, but the amounts of material needed for the assays differed greatly between the three assays (ER-binding assay ≫ YES > ER-CALUX). In addition, in the ER-binding assay, both agonists and antagonists give an estrogenic response, resulting in higher estradiol equivalency (EEQ) levels than both the ER-CALUX and the YES assay for the same samples. The EEQs found in wastewater treatment plants (WTPs) with the ER-CALUX assay were in the range of 4 to 440 and 0.11 to 59 pmol/L for influent and effluent, respectively. Water extracts from four large rivers had levels ranging from 0.25 to 1.72 pmol/L. Extracts from suspended matter and sludge contained estrogenic potency of 0.26 to 2.49 and 1.6 to 41 pmol EEQ/g dry weight, respectively. In WTPs, the average reduction of estrogenic potency in effluent compared to influent was 90 to 95% in municipal WTPs and about 50% in industrial WTPs. In influent, 30% of the ER-CALUX activity could not be explained by the calculated potencies based on chemical analysis of a number of known (xeno)estrogens; in effluent the unexplained fraction was 80%. These first results of analyzing estrogenic potency in WTP water and surface water in The Netherlands indicate that further studies are warranted to investigate the actual risks for aquatic systems
A physiologically based kinetic (PBK) model describing plasma concentrations of quercetin and its metabolites in rats
Biological activities of flavonoids in vivo are ultimately dependent on the systemic bioavailability of the aglycones as well as their metabolites. In the present study, a physiologically based kinetic (PBK) model was developed to predict plasma concentrations of the flavonoid quercetin and its metabolites and to tentatively identify the regiospecificity of the major circulating metabolites. The model was developed based on in vitro metabolic parameters and by fitting kinetic parameters to literature available in vivo data. Both exposure to quercetin aglycone and to quercetin-4'-O-glucoside, for which in vivo data were available, were simulated. The predicted plasma concentrations of different metabolites adequately matched literature reported plasma concentrations of these metabolites in rats exposed to 4'-O-glucoside. The bioavailability of aglycone was predicted to be very low ranging from 0.004%-0.1% at different oral doses of quercetin or quercetin-4'-O-glucoside. Glucuronidation was a crucial pathway that limited the bioavailability of the aglycone, with 95–99% of the dose being converted to monoglucuronides within 1.5–2.5 h at different dose levels ranging from 0.1 to 50 mg/kg bw quercetin or quercetin-4'-O-glucoside. The fast metabolic conversion to monoglucuronides allowed these metabolites to further conjugate to di- and tri-conjugates. The regiospecificity of major circulating metabolites was observed to be dose-dependent. As we still lack in vivo kinetic data for many flavonoids, the developed model has a great potential to be used as a platform to build PBK models for other flavonoids as well as to predict the kinetics of flavonoids in humans
A physiologically based in silico model for trans-2-hexenal detoxicifcation and DNA adduct formation in human including interindividual variation indicates efficient detoxification and a negligible genotoxicity risk
A number of a,ß-unsaturated aldehydes are present in food both as natural constituents and as flavouring agents. Their reaction with DNA due to their electrophilic a,ß-unsaturated aldehyde moiety may result in genotoxicity as observed in some in vitro models, thereby raising a safety concern. A question that remains is whether in vivo detoxification would be efficient enough to prevent DNA adduct formation and genotoxicity. In this study, a human physiologically based kinetic/dynamic (PBK/D) model of trans-2-hexenal (2-hexenal), a selected model a,ß-unsaturated aldehyde, was developed to examine dose-dependent detoxification and DNA adduct formation in humans upon dietary exposure. The kinetic model parameters for detoxification were quantified using relevant pooled human tissue fractions as well as tissue fractions from 11 different individual subjects. In addition, a Monte Carlo simulation was performed so that the impact of interindividual variation in 2-hexenal detoxification on the DNA adduct formation in the population as a whole could be examined. The PBK/D model revealed that DNA adduct formation due to 2-hexenal exposure was 0.039 adducts/108 nucleotides (nt) at the estimated average 2-hexenal dietary intake (0.04 mg 2-hexenal/kg bw) and 0.18 adducts/108 nt at the 95th percentile of the dietary intake (0.178 mg 2-hexenal/kg bw) in the most sensitive people. These levels are three orders of magnitude lower than natural background DNA adduct levels that have been reported in disease-free humans (6.8–110 adducts/108 nt), suggesting that the genotoxicity risk for the human population at realistic dietary daily intakes of 2-hexenal may be negligible
- …