336 research outputs found
Land Conservation in the Northeastern United States: An Assessment of Historic Trends and Current Conditions
This article discusses the evolution of land conservation efforts and outcomes in the Northeast, examine major drivers of landscape change, and review key conservation tools that have been used to protect public values at the local and landscape levels. We then assess the current status of land conservation, and draw lessons for other regions facing conservation challenges across mixed ownership landscapes under varying development and land-use pressures. Finally, we explore new and emerging trends in the factors driving land development and conservation activities in an effort to assess the challenges that lie ahead
Persistent molecular disease in adult patients with AML evaluated with whole-exome and targeted error-corrected DNA sequencing
PURPOSE: Persistent molecular disease (PMD) after induction chemotherapy predicts relapse in AML. In this study, we used whole-exome sequencing (WES) and targeted error-corrected sequencing to assess the frequency and mutational patterns of PMD in 30 patients with AML.
MATERIALS AND METHODS: The study cohort included 30 patients with adult AML younger than 65 years who were uniformly treated with standard induction chemotherapy. Tumor/normal WES was performed for all patients at presentation. PMD analysis was evaluated in bone marrow samples obtained during clinicopathologic remission using repeat WES and analysis of patient-specific mutations and error-corrected sequencing of 40 recurrently mutated AML genes (MyeloSeq).
RESULTS: WES for patient-specific mutations detected PMD in 63% of patients (19/30) using a minimum variant allele fraction (VAF) of 2.5%. In comparison, MyeloSeq identified persistent mutations above 0.1% VAF in 77% of patients (23/30). PMD was usually present at relatively high levels (\u3e2.5% VAFs), such that WES and MyeloSeq agreed for 73% of patients despite differences in detection limits. Mutations in
CONCLUSION: PMD and clonal hematopoiesis are both common in patients with AML in first remission. These findings demonstrate the importance of baseline testing for accurate interpretation of mutation-based tumor monitoring assays for patients with AML and highlight the need for clinical trials to determine whether these complex mutation patterns correlate with clinical outcomes in AML
Racial and ethnic disparities in cervical cancer screening from three U.S. healthcare settings
INTRODUCTION: This study sought to characterize racial and ethnic disparities in cervical cancer screening and follow-up of abnormal findings across 3 U.S. healthcare settings.
METHODS: Data were from 2016 to 2019 and were analyzed in 2022, reflecting sites within the Multi-level Optimization of the Cervical Cancer Screening Process in Diverse Settings & Populations Research Center, part of the Population-based Research to Optimize the Screening Process consortium, including a safety-net system in the southwestern U.S., a northwestern mixed-model system, and a northeastern integrated healthcare system. Screening uptake was evaluated among average-risk patients (i.e., no previous abnormalities) by race and ethnicity as captured in the electronic health record, using chi-square tests. Among patients with abnormal findings requiring follow-up, the proportion receiving colposcopy or biopsy within 6 months was reported. Multivariable regression was conducted to assess how clinical, socioeconomic, and structural characteristics mediate observed differences.
RESULTS: Among 188,415 eligible patients, 62.8% received cervical cancer screening during the 3-year study period. Screening use was lower among non-Hispanic Black patients (53.2%) and higher among Hispanic (65.4%,) and Asian/Pacific Islander (66.5%) than among non-Hispanic White patients (63.5%, all p\u3c0.001). Most differences were explained by the distribution of patients across sites and differences in insurance. Hispanic patients remained more likely to screen after controlling for a variety of clinical and sociodemographic factors (risk ratio=1.14, CI=1.12, 1.16). Among those receiving any screening test, Black and Hispanic patients were more likely to receive Pap-only testing (versus receiving co-testing). Follow-up from abnormal results was low for all groups (72.5%) but highest among Hispanic participants (78.8%, p\u3c0.001).
CONCLUSIONS: In a large cohort receiving care across 3 diverse healthcare settings, cervical cancer screening and follow-up were below 80% coverage targets. Lower screening for Black patients was attenuated by controlling for insurance and site of care, underscoring the role of systemic inequity. In addition, it is crucial to improve follow-up after abnormalities are identified, which was low for all populations
‘Trying to pin down jelly’ - exploring intuitive processes in quality assessment for meta-ethnography
Background:
Studies that systematically search for and synthesise qualitative research are becoming more evident in health care, and they can make an important contribution to patient care. However, there is still no agreement as to whether, or how we should appraise studies for inclusion. We aimed to explore the intuitive processes that determined the ‘quality’ of qualitative research for inclusion in qualitative research syntheses. We were particularly interested to explore the way that knowledge was constructed.
Methods:
We used qualitative methods to explore the process of quality appraisal within a team of seven qualitative researchers funded to undertake a meta-ethnography of chronic non-malignant musculoskeletal pain. Team discussions took place monthly between October 2010 and June 2012 and were recorded and transcribed. Data was coded and organised using constant comparative method. The development of our conceptual analysis was both iterative and collaborative. The strength of this team approach to quality came from open and honest discussion, where team members felt free to agree, disagree, or change their position within the safety of the group.
Results:
We suggest two core facets of quality for inclusion in meta-ethnography - (1) Conceptual clarity; how clearly has the author articulated a concept that facilitates theoretical insight. (2) Interpretive rigour; fundamentally, can the interpretation ‘be trusted?’ Our findings showed that three important categories help the reader to judge interpretive rigour: (ii) What is the context of the interpretation? (ii) How inductive is the interpretation? (iii) Has the researcher challenged their interpretation?
Conclusions:
We highlight that methods alone do not determine the quality of research for inclusion into a meta-ethnography. The strength of a concept and its capacity to facilitate theoretical insight is integral to meta-ethnography, and arguably to the quality of research. However, we suggest that to be judged ‘good enough’ there also needs to be some assurance that qualitative findings are more than simply anecdotal. Although our conceptual model was developed specifically for meta-ethnography, it may be transferable to other research methodologies
Electrically Sorted Single-Walled Carbon Nanotubes-Based Electron Transporting Layers for Perovskite Solar Cells
© 2019 The Author(s). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).Incorporation of as prepared single-walled carbon nanotubes (SWCNTs) into the electron transporting layer (ETL) is an effective strategy to enhance the photovoltaic performance of perovskite solar cells (PSCs). However, the fundamental role of the SWCNT electrical types in the PSCs is not well understood. Herein, we prepared semiconducting (s-) and metallic (m-) SWCNT families and integrated them into TiO2 photoelectrodes of the PSCs. Based on experimental and theoretical studies, we found that the electrical type of the nanotubes plays an important role in the devices. In particular, the mixture of s-SWCNTs and m-SWCNTs (2:1 w/w)-based PSCs exhibited a remarkable efficiency of up to 19.35%, which was significantly higher than that of the best control cell (17.04%). In this class of PSCs, semiconducting properties of s-SWCNTs play a critical role in extracting and transporting electrons, whereas m-SWCNTs provide high conductance throughout the electrode
Transcriptional and phenotypic comparisons of Ppara knockout and siRNA knockdown mice
RNA interference (RNAi) has great potential as a tool for studying gene function in mammals. However, the specificity and magnitude of the in vivo response to RNAi remains to be fully characterized. A molecular and phenotypic comparison of a genetic knockout mouse and the corresponding knockdown version would help clarify the utility of the RNAi approach. Here, we used hydrodynamic delivery of small interfering RNA (siRNA) to knockdown peroxisome proliferator activated receptor alpha (Ppara), a gene that is central to the regulation of fatty acid metabolism. We found that Ppara knockdown in the liver results in a transcript profile and metabolic phenotype that is comparable to those of Ppara(−/−) mice. Combining the profiles from mice treated with the PPARα agonist fenofibrate, we confirmed the specificity of the RNAi response and identified candidate genes proximal to PPARα regulation. Ppara knockdown animals developed hypoglycemia and hypertriglyceridemia, phenotypes observed in Ppara(−/−) mice. In contrast to Ppara(−/−) mice, fasting was not required to uncover these phenotypes. Together, these data validate the utility of the RNAi approach and suggest that siRNA can be used as a complement to classical knockout technology in gene function studies
Recommended from our members
A booster dose enhances immunogenicity of the COVID-19 vaccine candidate ChAdOx1 nCoV-19 in aged mice.
BACKGROUND: The spread of SARS-CoV-2 has caused a worldwide pandemic that has affected almost every aspect of human life. The development of an effective COVID-19 vaccine could limit the morbidity and mortality caused by infection and may enable the relaxation of social-distancing measures. Age is one of the most significant risk factors for poor health outcomes after SARS-CoV-2 infection; therefore, it is desirable that any new vaccine candidates elicit a robust immune response in older adults. METHODS: Here, we use in-depth immunophenotyping to characterize the innate and adaptive immune response induced upon intramuscular administration of the adenoviral vectored ChAdOx1 nCoV-19 (AZD-1222) COVID-19 vaccine candidate in mice. FINDINGS: A single vaccination generates spike-specific Th1 cells, Th1-like Foxp3+ regulatory TÂ cells, polyfunctional spike-specific CD8+ TÂ cells. and granzyme-B-producing CD8 effectors. Spike-specific IgG and IgM are generated from both the early extrafollicular antibody response and the T follicular helper cell-supported germinal center reaction, which is associated with the production of virus-neutralizing antibodies. A single dose of this vaccine generated a similar type of immune response in aged mice but of a reduced magnitude than in younger mice. We report that a second dose enhances the immune response to this vaccine in aged mice. CONCLUSIONS: This study shows that ChAdOx1 nCoV-19 induces both cellular and humoral immunity in adult and aged mice and suggests a prime-boost strategy is a rational approach to enhance immunogenicity in older persons. FUNDING: This study was supported by BBSRC, Lister institute of Preventative Medicine, EPSRC VaxHub, and Innovate UK
Liquid-Metal Synthesized Ultrathin SnS Layers for High-Performance Broadband Photodetectors
Atomically thin materials face an ongoing challenge of scalability, hampering practical deployment despite their fascinating properties. Tin monosulfide (SnS), a low-cost, naturally abundant layered material with a tunable bandgap, displays properties of superior carrier mobility and large absorption coefficient at atomic thicknesses, making it attractive for electronics and optoelectronics. However, the lack of successful synthesis techniques to prepare large-area and stoichiometric atomically thin SnS layers (mainly due to the strong interlayer interactions) has prevented exploration of these properties for versatile applications. Here, SnS layers are printed with thicknesses varying from a single unit cell (0.8 nm) to multiple stacked unit cells (approximate to 1.8 nm) synthesized from metallic liquid tin, with lateral dimensions on the millimeter scale. It is reveal that these large-area SnS layers exhibit a broadband spectral response ranging from deep-ultraviolet (UV) to near-infrared (NIR) wavelengths (i.e., 280-850 nm) with fast photodetection capabilities. For single-unit-cell-thick layered SnS, the photodetectors show upto three orders of magnitude higher responsivity (927 A W-1) than commercial photodetectors at a room-temperature operating wavelength of 660 nm. This study opens a new pathway to synthesize reproduceable nanosheets of large lateral sizes for broadband, high-performance photodetectors. It also provides important technological implications for scalable applications in integrated optoelectronic circuits, sensing, and biomedical imaging
Structure of human endo-a-1,2-mannosidase (MANEA), an antiviral host-glycosylation target
Mammalian protein N-linked glycosylation is critical for glycoprotein folding, quality control, trafficking, recognition, and function. N-linked glycans are synthesized from Glc3Man9GlcNAc2precursors that are trimmed and modified in the endoplasmic reticulum (ER) and Golgi apparatus by glycoside hydrolases and glycosyltransferases. Endo-a-1,2-mannosidase (MANEA) is the sole endoacting glycoside hydrolase involved in N-glycan trimming and is located within the Golgi, where it allows ER-escaped glycoproteins to bypass the classical N-glycosylation trimming pathway involving ER glucosidases I and II. There is considerable interest in the use of small molecules that disrupt N-linked glycosylation as therapeutic agents for diseases such as cancer and viral infection. Here we report the structure of the catalytic domain of human MANEA and complexes with substrate-derived inhibitors, which provide insight into dynamic loop movements that occur on substrate binding. We reveal structural features of the human enzyme that explain its substrate preference and the mechanistic basis for catalysis. These structures have inspired the development of new inhibitors that disrupt host protein N-glycan processing of viral glycans and reduce the infectivity of bovine viral diarrhea and dengue viruses in cellular models. These results may contribute to efforts aimed at developing broad-spectrum antiviral agents and help provide a more in-depth understanding of the biology of mammalian glycosylation
- …