1,256 research outputs found

    Species-Specific Effects on Ecosystem Functioning Can Be Altered by Interspecific Interactions

    Get PDF
    Biological assemblages are constantly undergoing change, with species being introduced, extirpated and experiencing shifts in their densities. Theory and experimentation suggest that the impacts of such change on ecosystem functioning should be predictable based on the biological traits of the species involved. However, interspecific interactions could alter how species affect functioning, with the strength and sign of interactions potentially depending on environmental context (e.g. homogenous vs. heterogeneous conditions) and the function considered. Here, we assessed how concurrent changes to the densities of two common marine benthic invertebrates, Corophium volutator and Hediste diversicolor, affected the ecological functions of organic matter consumption and benthic-pelagic nutrient flux. Complementary experiments were conducted within homogenous laboratory microcosms and naturally heterogeneous field plots. When the densities of the species were increased within microcosms, interspecific interactions enhanced effects on organic matter consumption and reduced effects on nutrient flux. Trait-based predictions of how each species would affect functioning were only consistently supported when the density of the other species was low. In field plots, increasing the density of either species had a positive effect on organic matter consumption (with no significant interspecific interactions) but no effect on nutrient flux. Our results indicate that species-specific effects on ecosystem functioning can be altered by interspecific interactions, which can be either facilitative (positive) or antagonistic (negative) depending on the function considered. The impacts of biodiversity change may therefore not be predictable based solely on the biological traits of the species involved. Possible explanations for why interactions were detected in microcosms but not in the field are discussed

    TOM40 Mediates Mitochondrial Dysfunction Induced by α-Synuclein Accumulation in Parkinson's Disease.

    Get PDF
    Alpha-synuclein (α-Syn) accumulation/aggregation and mitochondrial dysfunction play prominent roles in the pathology of Parkinson's disease. We have previously shown that postmortem human dopaminergic neurons from PD brains accumulate high levels of mitochondrial DNA (mtDNA) deletions. We now addressed the question, whether alterations in a component of the mitochondrial import machinery -TOM40- might contribute to the mitochondrial dysfunction and damage in PD. For this purpose, we studied levels of TOM40, mtDNA deletions, oxidative damage, energy production, and complexes of the respiratory chain in brain homogenates as well as in single neurons, using laser-capture-microdissection in transgenic mice overexpressing human wildtype α-Syn. Additionally, we used lentivirus-mediated stereotactic delivery of a component of this import machinery into mouse brain as a novel therapeutic strategy. We report here that TOM40 is significantly reduced in the brain of PD patients and in α-Syn transgenic mice. TOM40 deficits were associated with increased mtDNA deletions and oxidative DNA damage, and with decreased energy production and altered levels of complex I proteins in α-Syn transgenic mice. Lentiviral-mediated overexpression of Tom40 in α-Syn-transgenic mice brains ameliorated energy deficits as well as oxidative burden. Our results suggest that alterations in the mitochondrial protein transport machinery might contribute to mitochondrial impairment in α-Synucleinopathies

    Dasatinib inhibits CXCR4 signaling in chronic lymphocytic leukaemia cells and impairs migration towards CXCL12

    Get PDF
    Chemokines and their ligands play a critical role in enabling chronic lymphocytic leukaemia (CLL) cells access to protective microenvironmental niches within tissues, ultimately resulting in chemoresistance and relapse: disruption of these signaling pathways has become a novel therapeutic approach in CLL. The tyrosine kinase inhibitor dasatinib inhibits migration of several cell lines from solid-organ tumours, but effects on CLL cells have not been reported. We studied the effect of clinically achievable concentrations of dasatinib on signaling induced by the chemokine CXCL12 through its' receptor CXCR4, which is highly expressed on CLL cells. Dasatinib pre-treatment inhibited Akt and ERK phosphorylation in CLL cells upon stimulation with CXCL12. Dasatinib also significantly diminished the rapid increase in actin polymerisation observed in CLL cells following CXCL12 stimulation. Moreover, the drug significantly inhibited chemotaxis in a transwell assay, and reduced the percentage of cells able to migrate beneath a CXCL12-expressing murine stromal cell line. Dasatinib also abrogated the anti-apoptotic effect of prolonged CXCL12 stimulation on cultured CLL cells. These data suggest that dasatinib, akin to other small molecule kinase inhibitors targeting the B-cell receptor signaling pathway, may redistribute CLL cells from protective tissue niches to the peripheral blood, and support the investigation of dasatinib in combination strategies

    Feedback mechanisms stabilise degraded turf algal systems at a CO2 seep site

    Get PDF
    AbstractHuman activities are rapidly changing the structure and function of coastal marine ecosystems. Large-scale replacement of kelp forests and coral reefs with turf algal mats is resulting in homogenous habitats that have less ecological and human value. Ocean acidification has strong potential to substantially favour turf algae growth, which led us to examine the mechanisms that stabilise turf algal states. Here we show that ocean acidification promotes turf algae over corals and macroalgae, mediating new habitat conditions that create stabilising feedback loops (altered physicochemical environment and microbial community, and an inhibition of recruitment) capable of locking turf systems in place. Such feedbacks help explain why degraded coastal habitats persist after being initially pushed past the tipping point by global and local anthropogenic stressors. An understanding of the mechanisms that stabilise degraded coastal habitats can be incorporated into adaptive management to better protect the contribution of coastal systems to human wellbeing.</jats:p

    Susceptibility of hamsters to clostridium difficile isolates of differing toxinotype

    Get PDF
    Clostridium difficile is the most commonly associated cause of antibiotic associated disease (AAD), which caused ~21,000 cases of AAD in 2011 in the U.K. alone. The golden Syrian hamster model of CDI is an acute model displaying many of the clinical features of C. difficile disease. Using this model we characterised three clinical strains of C. difficile, all differing in toxinotype; CD1342 (PaLoc negative), M68 (toxinotype VIII) and BI-7 (toxinotype III). The naturally occurring non-toxic strain colonised all hamsters within 1-day post challenge (d.p.c.) with high-levels of spores being shed in the faeces of animals that appeared well throughout the entire experiment. However, some changes including increased neutrophil influx and unclotted red blood cells were observed at early time points despite the fact that the known C. difficile toxins (TcdA, TcdB and CDT) are absent from the genome. In contrast, hamsters challenged with strain M68 resulted in a 45% mortality rate, with those that survived challenge remaining highly colonised. It is currently unclear why some hamsters survive infection, as bacterial and toxin levels and histology scores were similar to those culled at a similar time-point. Hamsters challenged with strain BI-7 resulted in a rapid fatal infection in 100% of the hamsters approximately 26 hr post challenge. Severe caecal pathology, including transmural neutrophil infiltrates and extensive submucosal damage correlated with high levels of toxin measured in gut filtrates ex vivo. These data describes the infection kinetics and disease outcomes of 3 clinical C. difficile isolates differing in toxin carriage and provides additional insights to the role of each toxin in disease progression

    Chlamydia trachomatis ompA Variants in Trachoma: What Do They Tell Us?

    Get PDF
    Trachoma is an important cause of blindness resulting from transmission of the bacterium Chlamydia trachomatis. One way to understand better how this infection is transmitted and how the human immune system controls it is to study the strains of bacteria associated with infection. Comparing strains before and after treatment might help us learn if someone has a new infection or the same one as before. Identifying differences between disease-causing strains should help us understand how infection leads to disease and how the human host defences work. We chose to study variation in the chlamydial gene ompA because it determines the protein MOMP, one of the leading candidates for inclusion in a vaccine to prevent trachoma. If immunity to MOMP is important in natural trachoma infections, we would expect to find evidence of this in the way the strains varied. We did not find this, but instead found that two common strains seemed to cause different types of disease. Although their MOMPs were very slightly different, this did not really explain the differences. We conclude that methods of typing strains going beyond the ompA gene will be needed to help us understand the interaction between Chlamydia and its human host

    Insulin-like growth factor-I (IGF-I) and thioredoxin are differentially expressed along the reproductive tract of the ewe during the oestrous cycle and after ovariectomy

    Get PDF
    Insulin-like growth factor-I (IGF-I) and thioredoxin are regulated by gonadal steroids in the female reproductive tract of many species. Oestradiol regulates IGF-I and thioredoxin mRNA levels in the reproductive tract of prepubertal lambs. The physiological status (different endocrine environment) may affect the sensitivity of the reproductive tract to oestradiol and progesterone. We studied the effects of different endocrine milieus (late-follicular and luteal phases of the oestrous cycle, and ovariectomy before or after puberty) on the expression of IGF-I, thioredoxin, oestrogen receptor α (ERα) and progesterone receptor (PR) in sheep. The mRNA levels were determined by a solution hybridisation technique. In the uterus the levels of ERα, PR and thioredoxin mRNA were higher in the late-follicular phase group than in the other three groups, and IGF-I mRNA was high during both the late-follicular and the luteal phases. In the cervix only PR mRNA was significantly higher in the ewes in the late-follicular phase than in the other groups. In the oviducts the levels of thioredoxin and ERα mRNA were highest in the ovariectomised adult ewes, and thioredoxin mRNA was higher than the levels found in the ewes in the late-follicular phase. The IGF-I mRNA levels in the oviduct did not differ between any of the groups. The transcripts of IGF-I, thioredoxin, ERα and PR, varied according to the physiological status and also along the female reproductive tract, suggesting that the regulation of the mRNA levels of these factors by the steroid environment is tissue specific. Koncentrationen av insulin-like growth factor-I (IGF-I) och thioredoxin regleras hos mÄnga arter i honors reproduktionsorgan av könssteroider. SÄlunda reglerar östradiol IGF-I och thioredoxin mRNA i reproduktionsorganen hos prepubertala lamm. Djurets fysiologiska status (dvs den endokrina miljön) kan pÄverka kÀnsligheten hos reproduktionsorganen för östradiol och progesteron. Vi studerade effekterna av olika endokrina miljöer (sen follikelfas och lutealfas i östruscykeln, samt ovariektomi före och efter puberteten) pÄ uttrycket av IGF-I, thioredoxin, östrogenreceptor α (ERα) och progesteronreceptorn (PR) hos fÄr. Lösningshybridisering anvÀndes för att bestÀmma mRNA nivÄerna. I livmodern var mRNA koncentrationen för ERα, PR och thioredoxin högre i sen follikelfas Àn i de andra tre grupperna och IGF-I mRNA nivÄn var hög bÄde under sen follikelfas och i lutealfas. PR mRNA i cervix var signifikant högre hos tackorna under sen follikelfas Àn i de andra grupperna. I Àggledarna var mRNA nivÄerna av thioredoxin och ERα högst i de djur som ovariektomerats som vuxna, och thioredoxin mRNA var högre Àn hos tackorna under sen follikelfas. Det förelÄg ingen skillnad vad gÀller IGF-I mRNA nivÄerna i Àggledaren mellan nÄgon av grupperna. IGF-I, thioredoxin, ERα och PR mRNA nivÄerna varierade beroende pÄ fysiologisk status och morfologisk lokalisation i reproduktionsorganen. Detta tyder pÄ att steroidhormonernas reglering av dessa faktorers mRNA uttryck ocksÄ Àr vÀvnadsspecifik
    • 

    corecore