466 research outputs found
Comment on: "Revealing common artifacts due to ferromagnetic inclusions in highly oriented pyrolytic graphite", by M. Sepioni, R.R. Nair, I.-Ling Tsai, A.K. Geim and I.V. Grigorieva, EPL 97 (2012) 47001
This comment addresses several issues in the paper by Sepioni et al., where
it is stated that the ferromagnetism in pristine highly oriented pyrolytic
graphite (HOPG) reported by several groups in the previous years is most likely
due to impurity contamination. In this comment, clear arguments are given why
this statement is not justified. Furthermore, it is pointed out, that there are
already measurements using element-sensitive microscopic techniques, e.g. X-ray
Magnetic Circular Dichroism (XMCD) that directly proved the intrinsic origin of
the ferromagnetism in graphite, also in pristine HOPG.Comment: 1, 0 figures, 9 reference
-Electron Ferromagnetism in Metal Free Carbon Probed by Soft X-Ray Dichroism
Elemental carbon represents a fundamental building block of matter and the
possibility of ferromagnetic order in carbon attracted widespread attention.
However, the origin of magnetic order in such a light element is only poorly
understood and has puzzled researchers. We present a spectromicroscopy study at
room temperature of proton irradiated metal free carbon using the elemental and
chemical specificity of x-ray magnetic circular dichroism (XMCD). We
demonstrate that the magnetic order in the investigated system originates only
from the carbon -electron system.Comment: 10 pages 3 color figure
The role of hydrogen in room-temperature ferromagnetism at graphite surfaces
We present a x-ray dichroism study of graphite surfaces that addresses the
origin and magnitude of ferromagnetism in metal-free carbon. We find that, in
addition to carbon states, also hydrogen-mediated electronic states
exhibit a net spin polarization with significant magnetic remanence at room
temperature. The observed magnetism is restricted to the top 10 nm of
the irradiated sample where the actual magnetization reaches emu/g
at room temperature. We prove that the ferromagnetism found in metal-free
untreated graphite is intrinsic and has a similar origin as the one found in
proton bombarded graphite.Comment: 10 pages, 5 figures, 1 table, submitted to New Journal of Physic
Induced Magnetic Ordering by Proton Irradiation in Graphite
We provide evidence that proton irradiation of energy 2.25 MeV on
highly-oriented pyrolytic graphite samples triggers ferro- or ferrimagnetism.
Measurements performed with a superconducting quantum interferometer device
(SQUID) and magnetic force microscopy (MFM) reveal that the magnetic ordering
is stable at room temperature.Comment: 3 Figure
Recommended from our members
Modelling of a radio frequency plasma bridge neutralizer (RFPBN)
A performance model of a radio frequency plasma bridge neutralizer was developed to calculate the electrical parameters and optimize the neutralizer design. Minimization of power losses and gas consumption, and a maximization of the neutralizer lifetime and the reliability of the system are requirements of all electric propulsion concepts and strongly determine their future application. The requirements of the neutralizer depend on mission profiles
Study of the Negative Magneto-Resistance of Single Proton-Implanted Lithium-Doped ZnO Microwires
The magneto-transport properties of single proton-implanted ZnO and of
Li(7\%)-doped ZnO microwires have been studied. The as-grown microwires were
highly insulating and not magnetic. After proton implantation the Li(7\%) doped
ZnO microwires showed a non monotonous behavior of the negative
magneto-resistance (MR) at temperature above 150 K. This is in contrast to the
monotonous NMR observed below 50 K for proton-implanted ZnO. The observed
difference in the transport properties of the wires is related to the amount of
stable Zn vacancies created at the near surface region by the proton
implantation and Li doping. The magnetic field dependence of the resistance
might be explained by the formation of a magnetic/non magnetic heterostructure
in the wire after proton implantation.Comment: 6 pages with 5 figure
Magnetic properties of carbon phases synthesized using high pressure-high temperature treatment
Two sets of samples were synthesized at 3.5 GPa near the point of C60 cage
collapse at different annealing times. A clear structural transformation from
mixture of C60 polymeric phases to graphite-like hard carbon phase was
confirmed by X-ray diffraction and Raman spectroscopy. Magnetic force
microscopy and superconducting quantum interference device were used to
characterize the magnetic properties of the synthesized samples. We found that
the sample preparation conditions used in this study are not suitable to
produce bulk magnetic carbon.Comment: 26 pages, 7 figure
advanced electric propulsion diagnostic tools at iom
Abstract Recently, we have set up an Advanced Electric Propulsion Diagnostic (AEPD) platform [1] , which allows for the in-situ measurement of a comprehensive set of thruster performance parameters. The platform utilizes a five-axis-movement system for precise positioning of the thruster with respect to the diagnostic heads. In the first setup (AEPD1) an energy-selective mass spectrometer (ESMS) and a miniaturized Faraday probe for ion beam characterization, a telemicroscope and a triangular laser head for measuring the erosion of mechanical parts, and a pyrometer for surface temperature measurements were integrated. The capabilities of the AEPD1 platform were demonstrated with two electric propulsion thrusters, a gridded ion thruster RIT 22 (Airbus Defence & Space, Germany, [13]) and a Hall effect thruster SPT 100D EM1 (EDB Fakel, Russia, [1] , [4] ), in two different vacuum facilities
Ferromagnetism in Oriented Graphite Samples
We have studied the magnetization of various, well characterized samples of
highly oriented pyrolitic graphite (HOPG), Kish graphite and natural graphite
to investigate the recently reported ferromagnetic-like signal and its possible
relation to ferromagnetic impurities. The magnetization results obtained for
HOPG samples for applied fields parallel to the graphene layers - to minimize
the diamagnetic background - show no correlation with the magnetic impurity
concentration. Our overall results suggest an intrinsic origin for the
ferromagnetism found in graphite. We discuss possible origins of the
ferromagnetic signal.Comment: 11 figure
- âŠ