247 research outputs found

    Graft-Versus-Host Disease in Recipients of Male Unrelated Donor Compared with Parous Female Sibling Donor Transplants

    Get PDF
    Optimal donor selection is critical for successful allogeneic hematopoietic cell transplantation (HCT). Donor sex and parity are well-established risk factors for graft-versus-host disease (GVHD), with male donors typically associated with lower rates of GVHD. Well-matched unrelated donors (URDs) have also been associated with increased risks of GVHD as compared with matched sibling donors. These observations raise the question of whether male URDs would lead to more (or less) favorable transplant outcomes as compared with parous female sibling donors. We used the Center for International Blood and Marrow Transplant Research registry to complete a retrospective cohort study in adults with acute myeloid leukemia, acute lymphoblastic leukemia, or myelodysplastic syndrome, who underwent T-cell replete HCT from these 2 donor types (parous female sibling or male URD) between 2000 and 2012. Primary outcomes included grade 2 to 4 acute GVHD (aGVHD), chronic GVHD (cGVHD), and overall survival. Secondary outcomes included disease-free survival, transplant-related mortality, and relapse. In 2813 recipients, patients receiving male URD transplants (n = 1921) had 1.6 times higher risk of grade 2 to 4 aGVHD (P \u3c .0001). For cGVHD, recipient sex was a significant factor, so donor/recipient pairs were evaluated. Female recipients of male URD grafts had a higher risk of cGVHD than those receiving parous female sibling grafts (relative risk [RR] = 1.43, P \u3c .0001), whereas male recipients had similar rates of cGVHD regardless of donor type (RR = 1.09, P = .23). Donor type did not significantly affect any other end point. We conclude that when available, parous female siblings are preferred over male URDs

    Determining the Quantitative Principles of T Cell Response to Antigenic Disparity in Stem Cell Transplantation

    Get PDF
    Alloreactivity compromising clinical outcomes in stem cell transplantation is observed despite HLA matching of donors and recipients. This has its origin in the variation between the exomes of the two, which provides the basis for minor histocompatibility antigens (mHA). The mHA presented on the HLA class I and II molecules and the ensuing T cell response to these antigens results in graft vs. host disease. In this paper, results of a whole exome sequencing study are presented, with resulting alloreactive polymorphic peptides and their HLA class I and HLA class II (DRB1) binding affinity quantified. Large libraries of potentially alloreactive recipient peptides binding both sets of molecules were identified, with HLA-DRB1 generally presenting a greater number of peptides. These results are used to develop a quantitative framework to understand the immunobiology of transplantation. A tensor-based approach is used to derive the equations needed to determine the alloreactive donor T cell response from the mHA-HLA binding affinity and protein expression data. This approach may be used in future studies to simulate the magnitude of expected donor T cell response and determine the risk for alloreactive complications in HLA matched or mismatched hematopoietic cell and solid organ transplantation

    Progress toward curing HIV infection with hematopoietic cell transplantation.

    Get PDF
    HIV-1 infection afflicts more than 35 million people worldwide, according to 2014 estimates from the World Health Organization. For those individuals who have access to antiretroviral therapy, these drugs can effectively suppress, but not cure, HIV-1 infection. Indeed, the only documented case for an HIV/AIDS cure was a patient with HIV-1 and acute myeloid leukemia who received allogeneic hematopoietic cell transplantation (HCT) from a graft that carried the HIV-resistant CCR5-∆32/∆32 mutation. Other attempts to establish a cure for HIV/AIDS using HCT in patients with HIV-1 and malignancy have yielded mixed results, as encouraging evidence for virus eradication in a few cases has been offset by poor clinical outcomes due to the underlying cancer or other complications. Such clinical strategies have relied on HIV-resistant hematopoietic stem and progenitor cells that harbor the natural CCR5-∆32/∆32 mutation or that have been genetically modified for HIV-resistance. Nevertheless, HCT with HIV-resistant cord blood remains a promising option, particularly with inventories of CCR5-∆32/∆32 units or with genetically modified, human leukocyte antigen-matched cord blood

    Donor whole blood DNA methylation is not a strong predictor of acute graft versus host disease in unrelated donor allogeneic haematopoietic cell transplantation

    Get PDF
    Allogeneic hematopoietic cell transplantation (HCT) is used to treat many blood-based disorders and malignancies. While this is an effective treatment, it can result in serious adverse events, such as the development of acute graft-versus-host disease (aGVHD). This study aimed to develop a donor-specific epigenetic classifier that could be used in donor selection in HCT to reduce the incidence of aGVHD. The discovery cohort of the study consisted of 288 donors from a population receiving HLA-A, -B, -C and -DRB1 matched unrelated donor HCT with T cell replete peripheral blood stem cell grafts for treatment of acute leukaemia or myelodysplastic syndromes after myeloablative conditioning. Donors were selected based on recipient aGVHD outcome; this cohort consisted of 144 cases with aGVHD grades III-IV and 144 controls with no aGVHD that survived at least 100 days post-HCT matched for sex, age, disease and GVHD prophylaxis. Genome-wide DNA methylation was assessed using the Infinium Methylation EPIC BeadChip (Illumina), measuring CpG methylation at >850,000 sites across the genome. Following quality control, pre-processing and exploratory analyses, we applied a machine learning algorithm (Random Forest) to identify CpG sites predictive of aGVHD. Receiver operating characteristic (ROC) curve analysis of these sites resulted in a classifier with an encouraging area under the ROC curve (AUC) of 0.91. To test this classifier, we used an independent validation cohort (n=288) selected using the same criteria as the discovery cohort. Different attempts to validate the classifier using the independent validation cohort failed with the AUC falling to 0.51. These results indicate that donor DNA methylation may not be a suitable predictor of aGVHD in an HCT setting involving unrelated donors, despite the initial promising results in the discovery cohort. Our work highlights the importance of independent validation of machine learning classifiers, particularly when developing classifiers intended for clinical use

    A Detailed View of KIR Haplotype Structures and Gene Families as Provided by a New Motif-Based Multiple Sequence Alignment

    Get PDF
    Human chromosome 19q13.4 contains genes encoding killer-cell immunoglobulin-like receptors (KIR). Reported haplotype lengths range from 67 to 269 kb and contain 4 to 18 genes. The region has certain properties such as single nucleotide variation, structural variation, homology, and repetitive elements that make it hard to align accurately beyond single gene alleles. To the best of our knowledge, a multiple sequence alignment of KIR haplotypes has never been published or presented. Such an alignment would be useful to precisely define KIR haplotypes and loci, provide context for assigning alleles (especially fusion alleles) to genes, infer evolutionary history, impute alleles, interpret and predict co-expression, and generate markers. In order to extend the framework of KIR haplotype sequences in the human genome reference, 27 new sequences were generated including 24 haplotypes from 12 individuals of African American ancestry that were selected for genotypic diversity and novelty to the reference, to bring the total to 68 full length genomic KIR haplotype sequences. We leveraged these data and tools from our long-read KIR haplotype assembly algorithm to define and align KIR haplotypes at <5 kb resolution on average. We then used a standard alignment algorithm to refine that alignment down to single base resolution. This processing demonstrated that the high-level alignment recapitulates human-curated annotation of the human haplotypes as well as a chimpanzee haplotype. Further, assignments and alignments of gene alleles were consistent with their human curation in haplotype and allele databases. These results define KIR haplotypes as 14 loci containing 9 genes. The multiple sequence alignments have been applied in two software packages as probes to capture and annotate KIR haplotypes and as markers to genotype KIR from WGS

    One-Antigen Mismatched Related versus HLA-Matched Unrelated Donor Hematopoietic Stem Cell Transplantation in Adults with Acute Leukemia: Center for International Blood and Marrow Transplant Research Results in the Era of Molecular HLA Typing

    Get PDF
    Approximately 13% of patients lacking an HLA-identical sibling have a one-antigen–mismatched related donor (MMRD). Historically, outcomes from the use of a one-antigen MMRD were considered equivalent to those from the use of a matched unrelated donor (UD). Recent improvements in UD stem cell transplantation (SCT) resulting from better molecular HLA matching justifies investigating whether UD should be preferred over MMRD in adult patients with acute leukemia. Here, we compared the outcomes of MMRD (n = 89) and HLA-A, -B, -C, and -DRB1 allele–matched UD (n = 700) SCT reported to the Center for International Blood and Marrow Transplant Research between 1995 and 2005. The patients underwent transplantation for acute myelogenous leukemia or acute lymphoblastic leukemia in first or second complete remission. Donor type was not associated with hematologic recovery. Univariate and multivariate comparisons of MMRD versus HLA-matched UD transplants showed no statistically significant differences in overall survival, disease-free survival, treatment-related mortality, relapse, or 100-day grade III-IV acute graft-versus-host disease (GVHD). MMRD SCT was associated with a lower rate of chronic GVHD at 1 year (35% vs 47%; P = .03), which was confirmed by multivariate analysis (relative risk, 0.58; 95% confidence interval, 0.39-0.85; P < .01). According to our data, HLA-matched UD and MMRD SCT are associated with comparable survival. Given that less chronic GVHD was observed in the MMRD transplantations, this option, when available, remains the first choice in patients with acute leukemia without an HLA-identical sibling in need of allogeneic SCT

    Donor HLA-E Status Associates with Disease-Free Survival and Transplant-Related Mortality after Non In Vivo T Cell-Depleted HSCT for Acute Leukemia

    Get PDF
    Previous studies have suggested that HLA-E may have a significant role in the outcome of matched unrelated hematopoietic stem cell transplantation (HSCT), especially for patients with acute leukemia. We used Center for International Blood and Marrow Transplant Research data and samples of 1840 adult patients with acute leukemia and their 10/10 HLA-matched unrelated donors to investigate the impact of HLA-E matching status as well as of donor/recipient (D/R) HLA-E genotype on post-HSCT outcome. Both patients and donors were HLA-E genotyped by next-generation sequencing. All patients received their first transplant in complete remission between 2000 and 2015. Median follow-up time was 90 months. Overall survival, disease-free survival (DFS), transplant-related mortality (TRM), and relapse incidence were primary endpoints with statistical significance set at .01. D/R HLA-E genotype analysis revealed a significant association of donor HLA-E*01:03/01:03 genotype with DFS (hazard ratio [HR] = 1.35, P = .0006) and TRM (HR= 1.41, P = .0058) in patients who received T cell replete (ie, without in vivo T cell depletion) transplants (n = 1297). As for D/R HLA-E matching, we did not identify any significant effect on any of the clinical outcome endpoints. In conclusion, this is the largest study to date reporting an improvement of DFS and TRM after matched unrelated HSCT by avoidance of HLA-E*01:03 homozygous donors in patients transplanted with T cell replete grafts for acute leukemia

    GRFS and CRFS in alternative donor hematopoietic cell transplantation for pediatric patients with acute leukemia.

    Get PDF
    We report graft-versus-host disease (GVHD)-free relapse-free survival (GRFS) (a composite end point of survival without grade III-IV acute GVHD [aGVHD], systemic therapy-requiring chronic GVHD [cGVHD], or relapse) and cGVHD-free relapse-free survival (CRFS) among pediatric patients with acute leukemia (n = 1613) who underwent transplantation with 1 antigen-mismatched (7/8) bone marrow (BM; n = 172) or umbilical cord blood (UCB; n = 1441). Multivariate analysis was performed using Cox proportional hazards models. To account for multiple testing, P \u3c .01 for the donor/graft variable was considered statistically significant. Clinical characteristics were similar between UCB and 7/8 BM recipients, because most had acute lymphoblastic leukemia (62%), 64% received total body irradiation-based conditioning, and 60% received anti-thymocyte globulin or alemtuzumab. Methotrexate-based GVHD prophylaxis was more common with 7/8 BM (79%) than with UCB (15%), in which mycophenolate mofetil was commonly used. The univariate estimates of GRFS and CRFS were 22% (95% confidence interval [CI], 16-29) and 27% (95% CI, 20-34), respectively, with 7/8 BM and 33% (95% CI, 31-36) and 38% (95% CI, 35-40), respectively, with UCB (P \u3c .001). In multivariate analysis, 7/8 BM vs UCB had similar GRFS (hazard ratio [HR], 1.12; 95% CI, 0.87-1.45; P = .39), CRFS (HR, 1.06; 95% CI, 0.82-1.38; P = .66), overall survival (HR, 1.07; 95% CI, 0.80-1.44; P = .66), and relapse (HR, 1.44; 95% CI, 1.03-2.02; P = .03). However, the 7/8 BM group had a significantly higher risk for grade III-IV aGVHD (HR, 1.70; 95% CI, 1.16-2.48; P = .006) compared with the UCB group. UCB and 7/8 BM groups had similar outcomes, as measured by GRFS and CRFS. However, given the higher risk for grade III-IV aGVHD, UCB might be preferred for patients lacking matched donors. © 2019 American Society of Hematology. All rights reserved

    Donor KIR B Genotype Improves Progression-Free Survival of Non-Hodgkin Lymphoma Patients Receiving Unrelated Donor Transplantation

    Get PDF
    Donor killer immunoglobulin-like receptor (KIR) genotypes are associated with relapse protection and survival after allotransplantation for acute myelogenous leukemia. We examined the possibility of a similar effect in a cohort of 614 non-Hodgkin lymphoma (NHL) patients receiving unrelated donor (URD) T cell-replete marrow or peripheral blood grafts. Sixty-four percent (n = 396) of donor-recipient pairs were 10/10 allele HLA matched and 26% were 9/10 allele matched. Seventy percent of donors had KIR B/x genotype; the others had KIR A/A genotype. NHL patients receiving 10/10 HLA-matched URD grafts with KIR B/x donors experienced significantly lower relapse at 5 years (26%; 95% confidence interval [CI], 21% to 32% versus 37%; 95% CI, 27% to 46%; P = .05) compared with KIR A/A donors, resulting in improved 5-year progression-free survival (PFS) (35%; 95% CI, 26% to 44% versus 22%; 95% CI, 11% to 35%; P = .007). In multivariate analysis, use of KIR B/x donors was associated with significantly reduced relapse risk (relative risk [RR], .63, P = .02) and improved PFS (RR, .71, P = .008). The relapse protection afforded by KIR B/x donors was not observed in HLA-mismatched transplantations and was not specific to any particular KIR-B gene. Selecting 10/10 HLA-matched and KIR B/x donors should benefit patients with NHL receiving URD allogeneic transplantation
    • …
    corecore