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Abstract

Donor killer immunoglobulin-like receptor (KIR) genotypes associate with relapse protection and 

survival after allotransplantation for acute myelogenous leukemia. We examined the possibility of 

a similar effect in a cohort of 614 non-Hodgkin lymphoma (NHL) patients receiving unrelated 

donor (URD) T-cell replete marrow or peripheral blood grafts. Sixty four percent (n=396) of 

donor-recipient pairs were 10/10 allele HLA-matched; 26% were 9/10 allele matched. Seventy 

percent of donors had KIR B/x genotype; the others had KIR A/A genotype. NHL patients 

receiving 10/10 HLA-matched URD grafts with KIR B/x donors experienced significantly lower 

relapse at 5 years (26%; CI 21–32% vs. 37%; CI 27–46%, p=0.05) compared with KIR A/A 
donors, resulting in improved 5 year progression-free survival (PFS) (35%; CI 26–44% vs. 22%; 

CI 11–35%; p=0.007). In multivariate analysis, use of KIR B/x donors associated with 

significantly reduced relapse risk (RR 0.63, p=0.02) and improved PFS (RR 0.71, p=0.008). The 

relapse protection afforded by KIR B/x donors was not observed in HLA-mismatched transplants, 
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and was not specific to any particular KIR-B gene. Selecting 10/10 HLA-matched and KIR B/x 
donors should benefit patients with NHL receiving URD allogeneic transplantation.
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Introduction

Allogeneic hematopoietic cell transplantation (HCT) can cure non-Hodgkin lymphoma 

(NHL) through the combination of chemotherapy and immune mediated graft-versus-

lymphoma (GvL) responses.[1] Long-term survival ranges from 30 to 70%, relapse being 

the major cause of treatment failure for all NHL histologic subtypes.[2,3] The mechanisms 

of tumor escape from GvL are poorly understood, but analyses of patients with acute 

myeloid leukemia (AML) after unrelated donor (URD) HCT reveal the importance of donor 

killer-cell immunoglobulin-like receptor (KIR) genotype in effective GvL responses.[4–6] 

NK cells reconstitute promptly after HCT, and express inhibitory KIRs that interact with 

class I HLA-C1 (ligand for KIR2DL2/3), HLA-C2 (ligand for 2DL1) and HLA-Bw4 

epitopes (ligand for 3DL1) to regulate NK cell education and function.[7] NK cells also can 

express activating KIRs 2DS1, 2DS2, 2DS3 and 2DS5 to co-regulate antitumor effects by 

binding to HLA-C2 (2DS1) or neo-ligands on tumor cells. Individuals vary in the number of 

KIR genes contained in their genome. KIR genes are closely linked on chromosome 19q and 

inherited as haplotype A or B from each parent. The main difference between group A and B 

haplotypes is that group B contains variable numbers of activating KIR genes, while group 

A has a fixed gene content of inhibitory but no activating KIR. About 70% of the population 

has at least one KIR B haplotype. The haplotypes combine to give the A/A and B/x (A/B or 

B/B) genotypes.[8] The KIR B genotype can be further defined by a KIR B content score 

determined by the number of centromeric and telomeric motifs containing B-haplotype 

defining genes (permissible values 0–4). HLA and KIR genes segregate on different 

chromosomes (6 and 19) and are inherited independently. Although donor selection is 

guided by HLA matching, we hypothesized that donor KIR interactions with recipient HLA 

might influence clinical outcomes. Our previous studies showed that KIR B/x donors, and 

not KIR A/A donors improve leukemia-free survival in AML.[4–6] The impact of KIR 
polymorphism on relapse and survival of patients with NHL after allo-grafting is unknown. 

In the current study, we investigated NHL patients receiving allogeneic URD HCT to 

determine the influence of donor KIR genotype and individual KIR B genes on clinical 

outcomes.

Patients and Methods

We studied 614 adults (age >18 years) with NHL who underwent T-cell replete URD HCT 

between 1990 and 2009 facilitated by the National Marrow Donor Program (NMDP). The 

outcome data were collected at the Center for International Blood and Marrow Transplant 

Research (CIBMTR). The study protocol was approved by the Institutional Review Board of 

the NMDP in accordance with the Declaration of Helsinki. Stored donor samples were 
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obtained from the CIBMTR Research Repository and genotyped for KIR.[9] KIR gene 

content was assessed, allowing each donor to be designated as either KIR A/A or B/x 
genotype.

Statistical Analysis

Progression-free survival (PFS) and overall survival (OS) were evaluated with Kaplan-Meier 

estimates.[10] Relapse, non-relapse mortality (NRM) and acute graft-versus-host disease 

(GVHD) were evaluated using the cumulative incidence function. Clinical variables were 

tested for the proportional hazard assumption and were adjusted as needed through 

stratification. Stepwise forward-backward selection was performed to build multivariate Cox 

proportional hazards models with a threshold of 0.05 for model entry. Donor KIR genotype, 

the primary variable of interest was forced into the model and adjusted for clinical variables. 

Other clinical variables analyzed were donor source, GVHD prophylaxis, conditioning 

regimen, HLA-match, time from diagnosis to transplant, histology group, disease status, in 

vivo T-cell depletion, age and KPS. To adjust for multiple testing, variable with p<0.01 were 

considered statistically significant.

Results

Patients, disease and transplant characteristics

The ages of the 614 NHL patients ranged from 19–72 with a median of 50 years. Follicular 

lymphoma was the most common histology, followed by mantle cell lymphoma, diffuse 

large B-cell lymphoma and T cell NHL; Burkitt/lymphoblastic lymphomas were excluded 

(Table 1). Almost all patients were Caucasians and 62% had chemosensitive lymphoma prior 

to transplant. Most patients were at least 1.5 years from diagnosis to transplant, 41% 

received myeloablative conditioning regimens and 63% received filgrastim mobilized 

peripheral blood stem cell (PBSC) grafts. The donor KIR genotype frequencies reflected 

those of a general Caucasian population; 30% were KIR A/A (n=183) and 70% were KIR 
B/x (n=431) with KIR-B content scores of 1 (n=243), 2 (n=140) or ≥3 (n=48). We found no 

correlation between KIR B/x and donor ethnicity (Caucasian vs other 71% vs 68%; p=0.4). 

Two-thirds of the donor-recipient pairs were 10/10 allele matched at HLA-A, -B, -C, -DRB1 
and -DQB1 (n=396); the rest were 1 (n=158) or ≥2 HLA allele (n=60) mismatched. Fully 

matched recipients were older (52 versus 48 years, p=0.0053), more of them received 

reduced intensity conditioning (RIC) (62% versus 52%, p=0.011), and received PBSC grafts 

(69% versus 53%, p=0.0003) vs HLA mismatched transplant recipients. There were no 

significant differences for other clinical variables (Table 1). We than compared 10/10 HLA 

matched donor-recipient pairs by donor KIR genotype and found similar patient and graft 

characteristics in patients with KIR A/A vs KIR B/x donors (Table 1).

Impact of KIR genetics on transplant outcomes

In the 10/10 HLA-matched HCT cohort (n=396), KIR B/x donor grafts resulted in less 

relapse at 5 years after transplantation (26% [95% CI 21–32%]) compared to KIR A/A 
donors (37% [27–46%]; p=0.05). This relapse protection translated into improved PFS (KIR 
B/x 35% [95% CI 26–44] versus (KIR A/A 22% [95% CI 11–35%]; p=0.007) (Figure 

1A/B). After adjusting for important clinical variables, KIR B/x donors conferred significant 
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protection against relapse (HR 0.63 [95% CI 0.43–0.92]; p=0.02) and improved PFS (HR 

0.71 [95% Cl 0.55–0.91]; p=0.008) compared to KIR A/A donors. In evaluating the 

protection conferred by individual genes of the KIR B haplotype (KIR2DS2, 2DS5, 2DL2, 
2DS1, 3DS1, 2DS3, and 2DL5), we found that each KIR gene was associated with a similar 

degree of protection against relapse (RRs 0.68–0.79; Figure 1C). Thus individual 

centromeric and telomeric KIR B genes had similar influences on transplant outcomes and 

donor with ≥3 KIR B genes conferred the best PFS compared to KIR A/A donors (RR 0.47; 

95%CI 0.27–0.81; p=0.007). The protective effect of KIR B/x donors was not observed for 

our cohort of HLA-mismatched transplants (RR 1.49 [95% CI 0.87–2.55; p = NS). Donor 

KIR genotypes had no effect on 1 year non-relapse mortality (KIR B/x vs KIR A/A Hazard 

ratio (HR) 0.8 (95% CI 0.55–1.11); p=0.17), grade II-IV acute GVHD (HR 1.06; 95%CI 

0.82–1.38; p=0.67) or chronic GVHD (HR 0.91; 95%CI 0.71–1.15; 0.42). Despite the effect 

on PFS, HCT recipients had similar OS when transplanted with KIR B/x versus KIR A/A 
donors (10/10 HLA matched cohort: HR 0.8 (95%CI 0.61–1.06); p=0.12; entire population: 

HR 0.9 (95%CI 0.74–1.1); p=0.4)). This likely reflects the growing number of immune 

options available to patients after receipt of an allograft

Clinical factors affecting transplant outcomes

Main factor associated with improved OS of entire population (n=614) in adjusted 

multivariate regression was RIC conditioning (HR 0.57 [95% CI 0.42–0.77]; p=0.0008). 

Shorter OS was associated with chemotherapy-resistant disease (HR 1.6 [95% CI 1.08–

2.40]; p=0.02), histology other than follicular lymphoma (HR 1.74–2.06; p=0.0001), and 

using ≥2 locus HLA-mismatched donors (≤8/10 match HR 1.46 [95%CI 1.06–2.01]; p=0.02; 

9/10 match HR 1.09 [95%CI 0.81–1.47; p=0.57). TRM was better with RIC conditioning 

(HR 0.6; 95% CI 0.5–0.8; p=0.001) and follicular lymphoma histology (HR 0.5; p=0.03) 

and was not influenced by 9/10 HLA match, GVHD prophylaxis and KIR status (KIR B/x 
HR 0.97; 95%CI 0.74–1.27; p= 0.81). HCT using donors with ≥2 locus HLA-mismatch had 

increased TRM (HR 1.5 (95%CI 0.99–2.26; p=0.056). Factors associated with increased 

relapse were chemotherapy resistance (HR 1.57; p=0.001), in vivo T cell depletion 

(HR=1.53; p=0.006), histology other that follicular lymphoma (HRs1.66–1.88; p=0.02) and 

≥2 locus HLA mismatch (≤8/10 match HR 1.8, p=0.016; 9/10 match HR 1.19; p=0.3). There 

were no interactions between the in vivo T cell depletion and <10/10 HLA mismatch. 

Adjusted incidence of grade III-IV acute GVHD was reduced with tacrolimus-other (mostly 

MTX) GVHD prophylaxis (HR 0.64 [HR 0.38–1.07] compared to tacrolimus-MMF (HR 

1.0) and CSA-containing regimen (HR 1.19 [0.71–1.99; overall p=0.012). Use of 

tacrolimus-other and CSA-based GVHD prophylaxis resulted to similar OS (HR 0.6 [0.46–

0.8]) and HR 0.72 [0.53–0.97]). Overall mortality was increased after tacrolimus-MMF 

combination (HR 1.0; p=0.0014). In adjusted multivariate regression, the 10/10 HLA-

matched cohort KIR B/x donors were associated with improved PFS and less relapse. 

Chemo-resistance, lymphoma histology other than follicular lymphoma and <1.5 years from 

diagnosis to transplant resulted in inferior PFS (Table 2). Relapse was increased by chemo-

resistance, shorter time to HCT and use of in vivo T cell depletion (Table 2).
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Discussion

The importance of donor KIR genotypes has been mainly studied in AML where benefit has 

been reported using haploidentical or matched URD donors. [4–6,11–14]. Here we report a 

similar benefit conferred by KIR B/x donors after 10/10 HLA-matched URD HCT for 

mature lymphoid malignancies. Using fully HLA-matched KIR B/x donors lowered relapse 

by 11% and resulted in significantly better PFS in NHL patients. These effects can 

potentially be explained by augmented cytolytic function and graft-versus-lymphoma 

alloreactivity of donor NK cells containing activating KIR. This is consistent with findings 

in AML by our group and others, as well as new findings in pediatric ALL. [3,6,14–20] 

While KIR B/x donors conferred significant improvement in PFS and relapse, we noted lack 

of impact on OS which likely reflects the efficacy of post-transplant therapies and effective 

immune interventions used in NHL patients who experience post-transplant relapse.[21]

Graft versus tumor effects are delivered by both NK cell and T cell responses against 

residual malignancy.[15] It is also clear that differential NK cell and T cell susceptibility is 

governed by HLA class I expression, NK cell receptor repertoires, and NK cell receptor 

ligands on targets. The balance between donor-derived T and NK cells may regulate the 

relative anti-tumor response between these cell types. NK cell alloreactivity in a transplant 

setting was first recognized in AML patients in absence of T cells with HLA-haploidentical 

donors and grafts prepared with CD34 selection.[16] The impact of genetic polymorphisms 

of KIR was subsequently reported by several groups showing protective effects of donor 

KIR B/x genotype in T-cell replete URD HCT in adult AML but not ALL.[3,6,14] The 

favorable influence of specific activating KIR2DS1 or KIR2DS2 on transplant outcomes in 

AML was confirmed by several groups in different transplant settings [12,14,17], but data on 

the benefit of KIR in lymphoid malignancies is scarce. After URD HCT for AML, we 

showed that donors with increasing number of KIR B defining motifs (≥2) contribute to the 

protective effect. However, in NHL, we find that a donor KIR gene content score of at least 1 

is protective. The protective effect is enhanced ≥3 KIR B defining motifs, and is not limited 

to any one specific activating KIR gene.

Many reports showed that clinical impact of KIR genetics differ between transplant 

procedures. In some reports, activating KIR genes have no effect on relapse, yet do result in 

lower TRM and improved OS using sibling donors.[18,13] The difference between AML 

and ALL outcomes may be a result of more pronounced HLA-C and HLA-B 

downregulation on AML and pediatric ALL blasts than adult ALL blasts potentially causing 

resistance again NK cell mediated cytolysis.[20] Similarly to pediatric ALL, lymphomas 

variably down regulate HLA class I molecules, particularly HLA-B and C, which engage 

inhibitory KIR on alloreactive NK cells.[22–24] For example EBV-transformed B-cell lines 

which completely lack HLA class I are particularly sensitive to NK mediated killing.[25] 

Indeed, relapse protection, irrespective of disease, perhaps combines cancer mediated 

downregulation of inhibitory HLA class I alleles with expression of potential neo-ligands for 

activating KIR on NK cells from KIR B/x donors.[26] This will require detailed study as 

most of these ligands are not yet established.
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The finding is that the benefit of a KIR B/x donor in NHL is limited to the HLA-matched 

URD HCT setting was unexpected. While it is plausible that altered reconstitution of 

alloreactive T cells versus NK cells may be dependent on HLA matching, it must be noted 

that recipients of HLA-mismatched grafts also more frequently received myeloablative 

conditioning and bone marrow grafts which can alter immune reconstitution, and matched 

grafts were more often T cell depleted in vivo. It is possible that alloreactive T cells 

dominant in HLA mismatched URD HCT for NHL mediate GvL, masking a smaller NK cell 

mediated effect. In contrast, an HLA matched donor with less HLA differences may have 

less T cell GvL and increase the importance of KIR B/x donor-mediated NK cells in this 

setting.

Our study confirmed the importance of established favorable prognostic factors for survival 

such as chemosensitive disease and follicular lymphoma histology. Other notable variables 

impacting OS in this series were RIC and adverse impact of tacrolimus-MMF GVHD 

prophylaxis. While RIC conferred a major reduction in TRM leading to improved survival; 

this contrasts with several prior studies analyzing mixed NHL histologies in which RIC also 

resulted to higher relapse rates for more aggressive NHL and offset the survival benefit.

[27,28] These discrepancies likely reflect the disease and patient heterogeneity of respective 

cohorts. Recipients of ≤8/10 matched grafts experienced higher relapse rate; however these 

60 patients more often had aggressive NHL including T cell and NK cell lymphoma (50% vs 

34%) compared to matched donor HCT and given small size of this subset, this data requires 

caution in inferring conclusions. Another interesting finding is the impact of GVHD regimen 

on survival. While survival after tacro-other (mostly MTX) and CSA-based combinations 

was similar, tacrolimus-MMF combination was associated with increased grade 3–4 acute 

GVHD and inferior survival. Inferior efficacy of tacrolimus-MMF may be explained by 

inadequate MMF levels; indeed data on MMF dosing and pharmacokinetics with tacrolimus 

is limited and warrants future investigations.[29,30]

In conclusion, our data suggest that patients with lymphoma benefit with relapse protection 

after HLA-matched URD HCT when using donors with KIR B/x haplotypes. This effect is 

broadly seen with the presence of an activating KIR gene and is not limited to a specific 

KIR. While prospective validation is merited, selecting a KIR B/x donor from amongst 

available HLA 10/10 allele-matched donors should benefit NHL patients in whom 

allografting with an unrelated donor is the best treatment option.
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Highlights

1. Donor KIR genetics influences graft-versus-lymphoma responses.

2. HLA-matched KIR B/x donors improve progression free survival.

3. KIR B/x donors benefit non-Hodgkin lymphoma patients undergoing 

matched unrelated transplantation.
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Figure 1. KIR B/x donors confer relapse protection and superior progression-free survival for 
NHL patients receiving 10/10 HLA-matched unrelated donor HCT
Adjusted cumulative incidence curve for relapse (A) and Kaplan Meier curve for 

progression-free survival (B) are shown for transplants involving donors of different KIR 
genotype (A/A vs. B/x). (C) The table lists the relative risks [RR] for PFS given by 

multivariate models that compared KIR A/A to KIR B/x donors based on their B gene 

content (1, 2, and 3 or 4 KIR B content elements). Also shown are comparisons between 

different subsets of KIR B/x donors including each of the 7 KIR B genes. Most donors with 

KIR B/x genotypes have more than one KIR B gene.
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Table 2

Multivariate analysis for PFS and relapse for patients undergoing 10/10-matched unrelated donor HCT for 

NHL.

Variable Hazard ratio 95% confidence intervals p-value

Progression free survival

KIR genotype 0.0075

 KIR A/A 1.0

 KIR B/x 0.71 0.55–0.91

Disease status 0.002

 Chemo sensitive 1.0 0.87–2.83

 Chemo resistant 1.41 0.84–2.35

 Complete Remission 0.74 0.43–1.27

Lymphoma subset 0.014

 Follicular lymphoma 1.0

 Diffuse large B cell 1.68 1.14–2.48

 Mantle cell lymphoma 1.61 1.12–2.3

 T cell lymphoma +other 1.62 1.16–2.3

Interval from Dx to HCT 0.013

 ≤ 1.5 year 1.0

 >1.5 year 0.73 0.56–0.94

Relapse rate

KIR genotype 0.018

 KIR A/A 1.0

 KIR B/x 0.63 0.43–0.92

Disease status 0.039

 Chemo sensitive 1.0

 Chemo resistant 1.08 0.53–2.2

 Complete remission 0.51 0.24–1.09

T cell depletion in vivo 0.0037

 No 1.0

 Yes 1.75 1.20–2.55

Interval from Dx to HCT

 ≤ 1.5 year 1.0 0.0003

 >1.5 year 0.49 0.33–0.72
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