59 research outputs found

    Synergy between medical informatics and bioinformatics: facilitating genomic medicine for future health care

    Get PDF
    Medical Informatics (MI) and Bioinformatics (BI) are two interdisciplinary areas located at the intersection between computer science and medicine and biology, respectively. Historically, they have been separated and only occasionally have researchers of both disciplines collaborated. The completion of the Human Genome Project has brought about in this post genomic era the need for a synergy of these two disciplines to further advance in the study of diseases by correlating essential genotypic information with expressed phenotypic information. Biomedical Informatics (BMI) is the emerging technology that aims to put these two worlds together in the new rising genomic medicine. In this regard, institutions such as the European Commission have recently launched several initiatives to support a new combined research agenda, based on the potential for synergism of both disciplines. In this paper we review the results the BIOINFOMED study one of these projects funded by the E

    Towards a precise simulation of effective material properties in injection moulded parts taking into account inhomogeneous microstructures

    No full text

    Folding and Unfolding of the Tryptophan Zipper in the Presence of Two Thioamide Substitutions

    Full text link
    We studied the stability and folding and unfolding kinetics of the tryptophan zipper, containing different double thioamide subsitutions. Conformation change was triggered by photoisomerization of an integrated AMPP photoswitch in the turn region of the hairpin, and transient spectra were recorded in the deep UV and the mid-IR, covering the time window of the (un)folding transition from picoseconds to tens of microseconds. Thio-substitution of inward-pointing backbone carbonyls was found to strongly destabilize the β-hairpin structures, whereas molecules with two outward pointing thio-carbonyls showed similar or enhanced stability with respect to the unsubstituted sequence, which we attribute to stronger interstrand hydrogen bonding. Thiolation of the two Trp residues closest to the turn can even prevent the opening of the hairpin after cis–trans isomerization of the switch. The circular dichroism due to the two thioamide ππ* transitions is spectrally well-separated from the aromatic tryptophan signal. It changes upon photoswitching, reflecting a local change in coupling and geometry
    • …
    corecore