5 research outputs found

    Non-tuberculous Mycobacteria can Cause Disseminated Mycobacteriosis in Cats

    Get PDF
    Mycobacteriosis caused by non-tuberculous mycobacteria (NTM) is a rising concern in human medicine both in immunocompromised and immunocompetent patients. In cats, mycobacteriosis caused by NTM is considered mostly to be a focal or dermal infection, with disseminated disease mostly caused by Mycobacterium avium. We describe three cases of disseminated mycobacteriosis in cats, caused by Mycobacterium malmoense, Mycobacterium branderi/shimoidei and M. avium, with no identified underlying immunosuppression. In all cases, extracellular mycobacteria were seen in the pulmonary epithelium, intestinal lumen and glomerular tufts, which could affect the shedding of the organism. The present study highlights the importance of mycobacteriosis as a differential even in immunocompetent animals. Considering the close relationship of owners and pets and the potential presence of free mycobacteria in secretions, cats should be considered as a possible environmental reservoir for mycobacteria. (C) 2018 Elsevier Ltd. All rights reserved.Peer reviewe

    Canine models of copper toxicosis for understanding mammalian copper metabolism

    Get PDF
    Hereditary forms of copper toxicosis exist in man and dogs. In man, Wilson’s disease is the best studied disorder of copper overload, resulting from mutations in the gene coding for the copper transporter ATP7B. Forms of copper toxicosis for which no causal gene is known yet are recognized as well, often in young children. Although advances have been made in unraveling the genetic background of disorders of copper metabolism in man, many questions regarding disease mechanisms and copper homeostasis remain unanswered. Genetic studies in the Bedlington terrier, a dog breed affected with copper toxicosis, identified COMMD1, a gene that was previously unknown to be involved in copper metabolism. Besides the Bedlington terrier, a number of other dog breeds suffer from hereditary copper toxicosis and show similar phenotypes to humans with copper storage disorders. Unlike the heterogeneity of most human populations, the genetic structure within a purebred dog population is homogeneous, which is advantageous for unraveling the molecular genetics of complex diseases. This article reviews the work that has been done on the Bedlington terrier, summarizes what was learned from studies into COMMD1 function, describes hereditary copper toxicosis phenotypes in other dog breeds, and discusses the opportunities for genome-wide association studies on copper toxicosis in the dog to contribute to the understanding of mammalian copper metabolism and copper metabolism disorders in man
    corecore