3,632 research outputs found

    Lagrangian statistics in unforced barotropic flows

    Get PDF
    We consider the dispersion of particles in potential vorticity (PV)-conserving flows. Because particle drift is preferentially along the mean PV contours, Lagrangian dispersion is strongly anisotropic. If the mean PV field moreover is spatially variable, as when there is topography, the anisotropy is more clearly visible in the dispersion of displacements along and across the mean PV field itself. We examine several numerical examples of unforced barotropic flows; in all cases, this projected dispersion is more anisotropic than that in cartesian (x, y) coordinates. What differs is the rate at which spreading occurs, both along and across contours. The method is applicable to real data, as is illustrated with float data from the deep North Atlantic. The results suggest a preferential spreading along contours of (barotropic) f/H

    Research Notes : Australia : Designation of a core collection of perennial Glycine

    Get PDF
    Over the last decade, a large germplasm collection of the 12 currently recognized perennial species of Glycine has been assembled. This collection, now numbering more than 1400 accessions, is held in Canberra, Australia, and is recognized by the International Board of Plant Genetic Resources as the world base collection for perennial Glycine. The 12 species include five that have been described recently

    Novel High Frequency Silicon Carbide Static Induction Transistor-Based Test-Bed for the Acquisition of SiC Power Device Reverse Recovery Characteristics

    Get PDF
    A test system is presented that utilizes a high-frequency Silicon Carbide (SiC) Static Induction Transistor (SIT) in place of the traditional MOSFET to test reverse recovery characteristics for the new class of SiC power diodes. An easily implementable drive circuit is presented that can drive the high-frequency SIT. The SiC SIT is also compared to a commonly used Si MOSFET in the test circuit application

    Physically meaningful and not so meaningful symmetries in Chern-Simons theory

    Get PDF
    We explicitly show that the Landau gauge supersymmetry of Chern-Simons theory does not have any physical significance. In fact, the difference between an effective action both BRS invariant and Landau supersymmetric and an effective action only BRS invariant is a finite field redefinition. Having established this, we use a BRS invariant regulator that defines CS theory as the large mass limit of topologically massive Yang-Mills theory to discuss the shift k \to k+\cv of the bare Chern-Simons parameter kk in conncection with the Landau supersymmetry. Finally, to convince ourselves that the shift above is not an accident of our regularization method, we comment on the fact that all BRS invariant regulators used as yet yield the same value for the shift.Comment: phyzzx, 21 pages, 2 figures in one PS fil

    Free Energy Functional for Nonequilibrium Systems: An Exactly Solvable Case

    Full text link
    We consider the steady state of an open system in which there is a flux of matter between two reservoirs at different chemical potentials. For a large system of size NN, the probability of any macroscopic density profile ρ(x)\rho(x) is exp⁥[−NF({ρ})]\exp[-N{\cal F}(\{\rho\})]; F{\cal F} thus generalizes to nonequilibrium systems the notion of free energy density for equilibrium systems. Our exact expression for F\cal F is a nonlocal functional of ρ\rho, which yields the macroscopically long range correlations in the nonequilibrium steady state previously predicted by fluctuating hydrodynamics and observed experimentally.Comment: 4 pages, RevTeX. Changes: correct minor errors, add reference, minor rewriting requested by editors and refere

    Continuity of the four-point function of massive ϕ44\phi_4^4-theory above threshold

    Full text link
    In this paper we prove that the four-point function of massive \vp_4^4-theory is continuous as a function of its independent external momenta when posing the renormalization condition for the (physical) mass on-shell. The proof is based on integral representations derived inductively from the perturbative flow equations of the renormalization group. It closes a longstanding loophole in rigorous renormalization theory in so far as it shows the feasibility of a physical definition of the renormalized coupling.Comment: 23 pages; to appear in Rev. Math. Physics few corrections, two explanatory paragraphs adde

    The One-loop UV Divergent Structure of U(1) Yang-Mills Theory on Noncommutative R^4

    Get PDF
    We show that U(1) Yang-Mills theory on noncommutative R^4 can be renormalized at the one-loop level by multiplicative dimensional renormalization of the coupling constant and fields of the theory. We compute the beta function of the theory and conclude that the theory is asymptotically free. We also show that the Weyl-Moyal matrix defining the deformed product over the space of functions on R^4 is not renormalized at the one-loop level.Comment: 8 pages. A missing complex "i" is included in the field strength and the divergent contributions corrected accordingly. As a result the model turns out to be asymptotically fre

    Evidence for a Soft Nuclear Equation-of-State from Kaon Production in Heavy Ion Collisions

    Full text link
    The production of pions and kaons has been measured in Au+Au collisions at beam energies from 0.6 to 1.5 AGeV with the Kaon Spectrometer at SIS/GSI. The K+ meson multiplicity per nucleon is enhanced in Au+Au collisions by factors up to 6 relative to C+C reactions whereas the corresponding pion ratio is reduced. The ratio of the K+ meson excitation functions for Au+Au and C+C collisions increases with decreasing beam energy. This behavior is expected for a soft nuclear equation-of-state.Comment: 14 pages, 2 figures, accepted for publication in Phys. Rev. Let

    Shock Profiles for the Asymmetric Simple Exclusion Process in One Dimension

    Full text link
    The asymmetric simple exclusion process (ASEP) on a one-dimensional lattice is a system of particles which jump at rates pp and 1−p1-p (here p>1/2p>1/2) to adjacent empty sites on their right and left respectively. The system is described on suitable macroscopic spatial and temporal scales by the inviscid Burgers' equation; the latter has shock solutions with a discontinuous jump from left density ρ−\rho_- to right density ρ+\rho_+, ρ−<ρ+\rho_-<\rho_+, which travel with velocity (2p−1)(1−ρ+−ρ−)(2p-1)(1-\rho_+-\rho_-). In the microscopic system we may track the shock position by introducing a second class particle, which is attracted to and travels with the shock. In this paper we obtain the time invariant measure for this shock solution in the ASEP, as seen from such a particle. The mean density at lattice site nn, measured from this particle, approaches ρ±\rho_{\pm} at an exponential rate as n→±∞n\to\pm\infty, with a characteristic length which becomes independent of pp when p/(1−p)>ρ+(1−ρ−)/ρ−(1−ρ+)p/(1-p)>\sqrt{\rho_+(1-\rho_-)/\rho_-(1-\rho_+)}. For a special value of the asymmetry, given by p/(1−p)=ρ+(1−ρ−)/ρ−(1−ρ+)p/(1-p)=\rho_+(1-\rho_-)/\rho_-(1-\rho_+), the measure is Bernoulli, with density ρ−\rho_- on the left and ρ+\rho_+ on the right. In the weakly asymmetric limit, 2p−1→02p-1\to0, the microscopic width of the shock diverges as (2p−1)−1(2p-1)^{-1}. The stationary measure is then essentially a superposition of Bernoulli measures, corresponding to a convolution of a density profile described by the viscous Burgers equation with a well-defined distribution for the location of the second class particle.Comment: 34 pages, LaTeX, 2 figures are included in the LaTeX file. Email: [email protected], [email protected], [email protected]

    Production of Charged Pions, Kaons and Antikaons in Relativistic C+C and C+Au Collisions

    Full text link
    Production cross sections of charged pions, kaons and antikaons have been measured in C+C and C+Au collisions at beam energies of 1.0 and 1.8 AGeV for different polar emission angles. The kaon and antikaon energy spectra can be described by Boltzmann distributions whereas the pion spectra exhibit an additional enhancement at low energies. The pion multiplicity per participating nucleon M(pi+)/A_part is a factor of about 3 smaller in C+Au than in C+C collisions at 1.0 AGeV whereas it differs only little for the C and the Au target at a beam energy of 1.8 AGeV. The K+ multiplicities per participating nucleon M(K+)/A_part are independent of the target size at 1 AGeV and at 1.8 AGeV. The K- multiplicity per participating nucleon M(K-)/A_part is reduced by a factor of about 2 in C+Au as compared to C+C collisions at 1.8 AGeV. This effect might be caused by the absorption of antikaons in the heavy target nucleus. Transport model calculations underestimate the K-/K+ ratio for C+C collisions at 1.8 AGeV by a factor of about 4 if in-medium modifications of K mesons are neglected.Comment: 19 pages, 14 figures, accepted for publication in Eur. Phys. J.
    • 

    corecore