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Lagrangian statistics in unforced barotropic � ows

by J. H. LaCasce1,2 and K. G. Speer1

ABSTRACT
We consider the dispersion of particles in potential vorticity (PV)-conserving � ows. Because

particle drift is preferentially along the mean PV contours, Lagrangian dispersion is strongly
anisotropic. If the mean PV � eld moreover is spatially variable, as when there is topography, the
anisotropy is more clearly visible in the dispersion of displacements along and across the mean PV
� eld itself. We examine several numerical examples of unforced barotropic � ows; in all cases, this
‘‘projected’’ dispersionis more anisotropicthan that in cartesian (x, y) coordinates.What differs is the
rate at which spreadingoccurs, both along and across contours.The method is applicable to real data,
as is illustrated with � oat data from the deep North Atlantic. The results suggest a preferential
spreading along contours of (barotropic) f/H.

1. Introduction

Particle transport in turbulent � ows is often idealized as a diffusive process, following
the landmark work of Taylor (1921). Taylor imagined a random walk-type motion which
might occur in isotropic, homogeneous turbulence, and showed how such a process would
lead to a diffusion of particles in x and y. This idea has been re� ned and applied to the
interpretation of oceanic � oat data (Davis, 1991). Davis’s modi� cations allow for a
spatially variable, possibly anisotropic diffusivity and for a variable mean � ow, both of
which are determined by direct measurements. Though sophisticated, the foundation of
such a construction nevertheless is the assumption of lateral diffusion.

However, the ocean, with rotation, strati� cation, bottom topography and mean � ows is
not necessarily as simple as homogeneous turbulence. How will such elements affect
particle dispersion? In the absence of forcing, � uid parcels move in such a way as to
conserve their potential vorticity (PV), e.g. Pedlosky (1987); as such, they will resist
drifting across mean PV contours, and one thus expects that tracer spreading will be
preferentially parallel to the mean PV � eld. All of the aforementioned elements (strati� ca-
tion, etc.) could alter the mean PV, and therefore affect Lagrangian dispersion.

The difficulty is in knowing which elements are important. If one knew the relative
strengths of the (strati� ed) wind-driven circulation, barotropic and baroclinic eddies, and
all other dynamical elements, one could make an educated guess. An alternative would be
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to examine actual particle trajectories vis a vis chosen mean PV � elds, and look for
correlations. The latter is the approach of the present work, and in particular, we de� ne a
rudimentary means of quantifying this correlation: the Lagrangian dispersion relative to
the PV � eld itself. Such a measure is useful because it will reveal whether dispersion is
more anisotropic relative to the mean PV � eld than in x and y. In addition, the rates of
increase of the dispersion along and across contours is found; thus one discovers for
example whether the spreading is consistent with lateral diffusion.

In the present work, we examine dispersion in some idealized examples. For simplicity,
we focus on unforced barotropic � ows, where particles conserve their total PV:

q 5
= 2 c 1 f ( y)

H(x, y)
, (1)

where H(x, y) is the water depth, c (x, y) is the streamfunction which de� nes the velocity
� eld and f ( y) is the Coriolis parameter. For quasi-geostrophic � ows (such as those
discussed hereafter), the variation of water depth is order Rossby number, and the mean PV
may be written:

q 5 f0 1 b y 1
f0
H0

h(x, y) (2)

where H(x, y) 5 H0 2 h(x, y) and * h * ½ * H0 * (Pedlosky, 1987), and the b -plane approxima-
tion ( f is a linear function of y) has been made. The mean portion of the PV � eld is the
so-called f/H � eld (the f/H contours discussed subsequently are de� ned as in (2)), and
because motion across these contours must be balanced by changes in relative vorticity
( = 2 c ), so we expect long term particle drift to be aligned with f/H.

If the bottom is � at, or H 5 const., zonal drift is favored over meridional drift, due to the
b -effect. This tendency will be clearly visible as an anisotropy between the zonal and
meridional dispersions (the mean square distance from the particle starting positions). If
the bottom is not � at, and moreover if the topographyvaries in both directions (H 5 H(x, y)),
the anisotropy may not necessarily be evident with the Cartesian dispersion; rather one
ought to examine the dispersion of displacements along and across f/H.

Hereafter, we consider a hierarchy of barotropic � ows: a single Rossby wave, multiple
Rossby waves, turbulence on the b -plane and turbulence over topography. In all cases, one
observes anisotropic dispersion; what differs is the rate of spreading, which in these cases
depends on the number of signi� cant Eulerian components (waves, mean � ows, etc.). In a
later work (LaCasce and Speer, 1999) we examine whether oceanic � oats are sensitive to
barotropic f/H. The results of one calculation, for � oats in the deep North Atlantic, is presented
here for comparison.All statisticalquantitiesdiscussed are presented in theAppendix.

2. Rossby waves

Arguably the simplest geophysical example of particle transport is that of particles
advected by a � nite amplitude Rossby wave in a channel. Such a wave is a solution of the
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quasi-geostrophic PV equation, i.e.



 t
= 2 c 1 J( c , = 2c ) 1 b



 x
c 5 0, (3)

under the condition of vanishing � ow at y 5 0 and y 5 2 p . The function J(a, b) ; (  a/  x
 b/ y) 2 (  b/  x  a/  y), is the Jacobian.A wave solution,which is also an exact solution of
(3), is:

c 5 A cos (kx 2 v t) cos (ly), with v 5
2 b k

k2 1 l2
; (4)

this streamfunction de� nes a velocity � eld which in turn may be used to advect particles.
Regier and Stommel (1979) numerically calculated such trajectories and showed that the
particles drift along latitude lines. Flierl (1981) derived analytical expressions for this
Lagrangian drift, both in the case of small amplitude waves (for which the Stoke’s
approximation is appropriate) and for large amplitude waves (for which it is not). The
reader is referred to Flierl (1981) for examples of trajectories and details on the method of
solution. Flierl showed that:

uD 5 f ( e , x, y) (5)

where e ; U/c is the ratio of the wave advective velocity to the phase velocity. The drift
velocity is either eastward or westward (see the lower panel of Fig 3), despite the fact that
the wave phase speed is uniquely westward, and varies in both x and y. At small e , uDa e 2;
with e . 1, the eastward drift velocity increases linearly with e , but the westward velocity
is bounded by c, the wave phase speed. Particles moving westward at uD 5 c are trapped by
the wave, whereas the eastward particles are expelled in the opposite direction. For values
of e , 5, approximately equal numbers of particles move west and east (assuming a
uniform initial deployment).At larger values of e , more and more particles are trapped by
the wave and so move westward.

Particles advected by a single wave therefore experience zonal shear dispersion. That is
to say that their mean separation from their starting meridian increases quadratically in
time, because:

7 (x 2 x0)2 8 5 7 uD(x, y)28 t2, (6)

where the brackets denote an average over all particles (see comments in the Appendix).
The quadratic time dependence occurs for all wave amplitudes. From the above, one
expects the total dispersion to scale with e 4 (i.e., proportional to the square of the kinetic
energy) for weak waves (U , c); for strong waves (U . c), the dispersion should increase
less rapidly than quadratically with ( e ), assuming that not all particles are trapped by the
wave.

Meridional dispersion on the other hand is bounded because particles periodically return
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to their starting latitude, from (4). If the Lagrangian period were identical for all particles,
the meridional dispersion would collapse to zero at every period, but like the drift velocity,
the Lagrangian period also depends on the initial position (Flierl, 1981). One observes that
the meridional dispersion saturates at a constant positive value (see Fig. 1). The time at
which saturation occurs is indicative of the mean Lagrangian period.

The principal point is that particles in a single Rossby wave experience anisotropic
spreading: shear dispersion in the zonal direction, and bounded dispersion in the meridi-
onal direction. The Rossby wave differs from a shear � ow primarily because particles
deployed at the same latitude may move either east or west.

Because the Lagrangian drift varies with a particle’s position in the wave, if one
displaces the particle, the drift rate will change.Thus a second Eulerian component, such as
a second wave or a mean shear, can alter the rate of spreading. Here we examine the former
case, i.e. of adding a second wave. Similar two-wave systems have been considered for
example by Weiss and Knobloch (1989) and Pierrehumbert (1991), both of whom studied
the chaotic mixing obtained upon the addition of the second wave.

Like Pierrehumbert, we assume the additionalwave is of similar zonal extent, but of half
the meridional extent; the results depend only weakly on this choice. By the Rossby wave
dispersion relation, the secondary wave has a slower phase speed, and the streamfunction
then has the following form:

c 5 A cos (x 2 c1t) cos ( y) 1 A2 cos (x 2 c2t) cos (2y), (7)

where * c2 * 5 1�5 , * c1 * 5 1�2. We gauge the secondary wave strength by e 2 5 U2/c2; the
primary wave is assumed to have e 1 5 U1/c1 5 1. Particles were advected via a
fourth-order Runge-Kutta scheme, and the dispersions (de� ned in the Appendix) for
different combinations of waves are shown in Figure 1.

At early times, the dispersion in both directions increases quadratically in time, as
predicted by Taylor (1921). Later on, the anisotropy between zonal and meridional
spreading is evident, and the meridional dispersion in particular is bounded. The latter is
expected because the meridional velocity for both waves vanishes at y 5 0 and y 5 2p , so
no particles can pass these latitudes. The rate of zonal spreading on the other hand depends
on the relative strengths of the waves. If the smaller wave is very weak, we recover the
single wave dispersion which increases quadratically in time (solid line). When the waves
are comparable in strength, the increase is more nearly linear in time, as it would be for a
diffusive process (Taylor, 1921). If the smaller wave is much stronger, the dependence is
again nearly quadratic; i.e., as if there were only one wave. In other words, shear dispersion
is found if one wave dominates, otherwise the rate of increase is less than quadratic.

As discussed by Weiss and Knobloch (1989) and Pierrehumbert (1991), a second wave
permits chaotic mixing. For our purposes, the second wave permits particles to access
different parts of the primary wave, and thereby drift zonally at different speeds. In the limit
of a weak secondary wave, particles are only marginally displaced from their original
positions, but if the second wave is strong, the particles may wander into all regions of the
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Figure 1. Dispersion (as de� ned in the Appendix) of particles advected by a superposition of two
Rossby waves. Zonal dispersion is shown in the upper panel, meridional dispersion in the lower.
The differentcurves correspondto different amplitudesof the second (smaller) wave; e 2 ; U2/c2 5
0 (solid), e 2 5 .5 (dashed), e 2 5 2 (dash-dot) and e 2 5 10 (dots).
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primary wave. In other words, the � ow becomes ergodic. As discussed for example by
Mezic and Wiggins (1994), there is a signi� cant connection between ergodicity and
diffusive dispersion.

There are, however, other interesting aspects about this two-wave case. The greatest
zonal dispersion occurs when the smaller wave is strong (e 2 5 10). In this case, the second
wave dominates advection, and the large dispersion is caused by the rapid eastward
expulsion (at speeds greater than the wave phase speed). Secondly, the meridional
dispersion saturates at an earlier time when the smaller wave dominates, suggesting a
smaller mean Lagrangian period. This is curious, because the smaller wave period is
actually longer. However, the important time scale in the limit of a strong wave is the wave
advective time scale, Ly/U2.

The primary point is that the rate of spreading along the mean PV contours depends on
the number and relative strengths of the advecting components. The caveat in this case is
that a dynamically consistent model with two Rossby waves would be nonstationary,
because two Rossby waves can interact nonlinearly to produce additionalwaves. Neverthe-
less, the results are useful in understanding dispersion under actual solutions of Eq. (3), as
in the following sections.

3. b -turbulence

We seek a multi-component � ow which is a solution of Eq. (3). One approach would be
to initialize a numerical model with two waves and let them evolve in time, as was done by
Pierrehumbert (1991).An alternative is to consider many interactingmodes, i.e. a turbulent
� ow. Energy in freely evolving turbulence in two dimensions shifts to larger scales, the
so-called ‘‘inverse cascade’’ (e.g. Fjortoft, 1953; Kraichnan and Montgomery, 1980). With
b , the cascade slows greatly at a certain scale, due to competition from Rossby waves
which are relatively inefficient at energy transfer (e.g. Rhines, 1975). Thereafter, the
evolution is very slow, slow enough to be quasi-stationary for our purposes. Particle
motion in forced b -turbulence has been considered previously (Holloway and Kristmanns-
son, 1984), but while forcing and dissipation permit statistically stationary solutions, PV is
no longer conserved if the � ow is barotropic. So we necessarily focus on unforced
turbulence.

We begin with an initial � ow with random phases and an energy spectrum de� ned by:

KE1( k ) 5 5
0 if k , k 0

KE01k 6

(k 1 k 0)18
if k $ k 0

where k 5 (k2 1 l2)1/2 is the total wavenumber and k 0 5 14. With b 5 64, the arrest scale
(Rhines, 1975) is roughly one sixth the domain scale, which has a nondimensionalvalue of
2 p . So if the domain were 1100 km 3 1100 km, the initial scale would be about 75 km, and
the arrest scale about 200 km.
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The solution was calculated with a doubly periodic spectral code with 2562 Fourier
modes, described in Flierl (1994) and LaCasce (1998). Two points should be emphasized.
Firstly, one may model � ow on the b -plane while retaining meridional periodicity because
only the gradient ( b ) enters in Eq. (3). Secondly, the model has a numerical � lter which
damps large wavenumbers, so potential vorticity is not conserved; PV rather is removed at
small scales, similar to a very scale-selective diffusion. One thus expects deviations from
inviscid dynamics, but the apparent effects are small.

The horizontal wavenumber spectra at three different times are shown in Figure 2. The
energy is seen to shift to graver scales, and arrest at mode (k, l) 5 (1, 4). The spectra
evolves only gradually between t 5 50 and t 5 150, justifying the assumption of
quasi-stationarity. Note the dominant mode, (k, l) 5 (1, 4), is a ‘‘wave’’ mode not a ‘‘jet’’
mode (k 5 0), the arrested state commonly found for forced turbulence (e.g. Vallis and
Maltrud, 1994); consistent with this, one observes westward phase propagation in succes-
sive streamfunction plots (not shown), as with a single wave.

A number of particles (N 5 441) were seeded uniformly in the domain at t 5 50, a time
well after the arrest. The particles were advected via a fourth order interpolation scheme;
trajectories for a representative subset (N 5 44) of particles are shown in the upper panel of
Figure 3. While individual trajectories are complex (magni� ed view in insert), most
particles exhibit a systematic zonal drift. The direction of drift depends on the initial
position, with some moving west and others east.

For comparison, we made a single wave kinematic calculation with a streamfunction
amplitude approximately equal to that found at harmonic (1, 4) (Fig. 2), the same wave
scale and the same value of b ; we obtain e < 0.13 (Section 2), so the arrested wave is
‘‘weak’’ in the sense of Section 2. The resulting trajectories are shown in the lower panel of
(3). Unlike in the turbulence case, these are smooth and periodic (see insert). However, the
particles also drift zonally, and the dispersion (Fig. 4) is nearly the same; i.e., shear
dispersive in the zonal direction and bounded meridionally.

So arrested turbulence behaves like a single Rossby wave, in terms of particle advection.
Though other modes are present (Fig. 2), they are too weak to alter systematically the
Stokes drift associated with the (1, 4) mode. In other words, particles are not ‘‘bumped’’
into different regions of the primary wave, and so do not change the direction of zonal drift.
As with a single wave (Flierl, 1981), the direction of drift dependson the initial latitude and
longitude of the particle.

Unlike in the kinematic wave case, the meridional velocity here does not vanish at some
latitude, nevertheless meridional dispersion ceases. This is a consequence of the conserva-
tion of potential vorticity. On the b -plane, both the relative enstrophy ( e e * = 2c * 2 dA) and
the potential enstrophy ( e e * = 2c 1 b y * 2 dA) are conserved (e.g. Rhines, 1977); this in turn
bounds meridional displacements, because if particles continued to spread in y, their total
enstrophy would have to increase to balance the displacements.

We note that Pierrehumbert’s (1991) � nal state was also dominated by a single wave, so
the present solution is similar, despite greatly different initial conditions;however, this is to

1999] 251LaCasce & Speer: Lagrangian statistics



Figure 2. The horizontal wavenumber spectra, E(k, l) 5 (k2 1 l2) * c (k, l) * 2, from the b turbulence
runs at three different times. The values of the contours are as indicated.
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Figure 3. Particle trajectories from the b turbulence case (upper panel) and from a single wave
kinematic model (lower). A magni� ed portion of the trajectories in each case are shown in the
inserts.
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be expected, given an inverse cascade. Our value of b is somewhat larger, producing a
smaller scale � nal state, but otherwise the difference is not great. While Pierrehumbert did
not calculate dispersion, the result likely would have been similar to that found here.

In addition, the agreement with the purely inviscid, single-wave case reassures us that
numerical dissipation in the b -turbulence case is of little consequence, at least on these
time scales. This is probably because energy (which resides at large scales) is nearly
conserved after the deployment of the particles.

4. Ridges

Now we turn to cases in which the mean PV is not oriented parallel to latitude lines; the
previous experiment is repeated, but with topography. The topography was taken to vary

Figure 4. Particle dispersionfor the b turbulencecase,with comparablecurves for a singlewave kinematic
experiment.The wave had an amplitudeof e 1 5 U1/c1 5 .13 and wavenumbers(k, l) 5 (1, 4).
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sinusoidally in the zonal direction, so that the (variable portion of the) mean PV is:

q 5 b y 1 h 5 b y 1 h0 cos (x). (8)

We take b 5 64 and h0 5 50; the latter was chosen so that the topography and b y were
comparably strong. The resulting contours of f/H are open and undulating, as seen in Figure 5.3

The initial � ow used in Section 3 was allowed to evolve freely and arrest, and then particles were
deployed.The trajectoriesof a subset are shown in Figure 5. One notes a zonal spreading,as in the
previouscase, but preferentially along the f/H contours.

In the b turbulence case, the arrested state was wave-like, and zonal mean � ows were at
best weak (Fig. 2). In contrast, there is a signi� cant mean � ow with the ridges (upper panel
of Fig. 6). The � ow has narrow jets oriented ‘‘eastward’’ relative to the f/H � eld, and
broader ‘‘westward’’ return � ows (similar asymmetric � ows have been discussed by
Rhines, 1977). In addition, there is a comparably strong wave component which makes the

3. The f/H � eld shown represents the periodic topography plus b y, and so the � eld appears periodic only in x.
This was done merely for visual purposes, but is irrelevant to the dynamics which depend only on the mean
gradient of PV.

Figure 5. Trajectories for the ridge case, superimposed on f/H. The particles were deployed in the
area indicated by the white box.
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Figure 6. The mean (upper panel) and instantaneous (lower panel) streamfunctions for the ridge
case. The instantaneous � eld is from t 5 7.5. The contour values are [.025, .05, .15, .25, .35, .45],
and dashed contours correspond to negative values.
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mean � ow difficult to see in plots of the instantaneous streamfunction (lower panel of
Fig. 6). The nondimensional rms mean velocity is 0.52, whereas the rms total velocity is
0.94.

The mean dispersion in zonal and meridional directions is plotted in the upper panel of
Figure 7. The preference for zonal spreading is seen after t 5 5, and the increase in the
zonal dispersion is approximately linear in time, suggestive of zonal diffusion (see below).
The dispersion in y increases much more slowly, and nearly ceases at late times.

As can be inferred from Figure 6, neither the mean � ow nor the wave phase speeds are
oriented east-west, but rather along the f/H contours. So one is tempted to consider the
dispersion of displacements relative to the f/H contours; the method for calculating such
displacements is given in the Appendix; the results are shown in the lower panel of
Figure 7. Plotted are (D z , D h ), the dispersion of displacements along and across f/H
contours respectively. The third curve indicates Df/H, the dispersion of Lagrangian f/H
itself; i.e., of the values of f/H seen at each instant by the particles. The latter is calculated
here basically as a check for the cross contour dispersion (see Appendix).

One observes � rst that dispersion along f/H contours is several orders of magnitude
larger than that across, so dispersion is more anisotropic relative to f/H than it is in
Cartesian coordinates. Moreover, D z . Dx at any given time, so the distance travelled along
f/H is greater than in x. Similarly the cross contour dispersion is also less than that across
latitude lines, suggesting a greater resistance to crossing f/H contours.

Like the zonal dispersion, D z increases linearly in time. Such a linear increase is usually
indicative of a normal distribution of displacements, as is the case here, and of diffusion
(e.g., Batchelor and Townsend, 1953). So the motion is statistically equivalent to a
diffusive spreading along f/H. Had there only been the mean � ow, one would expect to
recover shear dispersion; the diffusion is evidently due to the additional advection by the
strong wave component (Fig. 6) which forces particles across the mean streamlines.
Indeed, particles are found to reverse their drift direction frequently.

As noted, the dispersion across f/H is also increasing in time; this is not an error of the
projection process (Appendix) because the dispersion about the initial value of f/H, Df/H, is
also increasing in time. In fact, both measures grow approximately linearly with t,
suggesting diffusion across contours as well, albeit markedly less than along the contours.
However the dispersion across latitude lines has apparently ceased; why is this? The
conservation of potential vorticity (1) guarantees the conservation of potential enstrophy,
which we may rewrite as follows:

e e (1�2)( = 2c 1 h 1 b y)2 5 e e (1�2)( = 2c 1 h)2

1 e e b y = 2 c 1 e e b y h 1 e e (1�2) b 2y2.
(9)

The last two terms on the right are constants of the domain, and the second term on the
right, proportional to Kelvin’s impulse, is conserved in a doubly periodic domain; so the
� rst term on the right is also constant. Because both the full potential enstrophy and that
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Figure 7. Dispersion in the ridge case. The zonal and meridional dispersion are shown in the upper
panel, the dispersion relative to f/H in the lower panel. Also shown in the lower panel is the
dispersion of values of f/H sampled by the particles, Df/H.



portion without b y are separately conserved, we may infer a bound on meridional
displacements of particles, just as when the bottom was � at.

In contrast enstrophy, (1�2) * = 2c * 2, is not separately conserved (as noted by Rhines, 1977),
so we cannot deduce a similar bound on ( b y 1 h). In practice, however, the Lagrangian
variance, Df/H, is bounded because the meridional spread is bounded and because the
topography is periodic in x; the bound is the maximum of ( * D ( b y 1 h) * max) 2 in a zonal
band of a width determined by the meridional spread, here about one unit. That value is
about 3 3 104, which is larger by an order of magnitude than the observed value of Df/H at t
5 100. Of interest is that the bound on meridional spreading is reached before that across
f/H, suggesting in turn a greater reluctance for drifting across f/H.

We have neglected the possibility that the topography itself might have a large-scale
gradient, which in turn would act like b to limit dispersion across the gradient. If for
example, h 5 h8 1 a x, one could separate out the linear portion and argue for a cessation in
zonal spreading. Such might be the case with a meridionally-orientedcontinental slope.

The main point is that dispersion is more anisotropic with respect to f/H than in
conventional cartesian coordinates, and that this is to be expected, given conservation of
PV. However, the difference between the dispersions in this case is not great, because the
f/H contours are mostly open. A more striking difference is found when the contours are
closed, as seen next.

5. Bumps

Next we take the mean PV � eld to be:

b y 1 h 5 32.0y 1 40.0 cos (x) cos ( y). (10)

Again particles were deployed after the spectral evolution had slowed; a subset of the
trajectories and the f/H � eld are shown in Figure 8. Many particles appear trapped in
regions of closed f/H contours, but some execute long, winding paths in open contour
regions. The particle motion is reminiscent of that found in the laboratory experiments of
Solomon et al. (1993), in which the Eulerian � ow was dominated by large vortices between
concentric cylinders. Their particles circled the vortices, but occasionally escaped and
moved in the outer perimeter, around the vortices. Such ‘‘Levi � ights’’ are associated with
‘‘anomalous,’’ or nondiffusive, dispersion, and consistent with this, the zonal dispersion in
our case (upper panel of Fig. 9) increases as t1.5; i.e., is neither shear dispersive nor
diffusive. The meridional dispersion appears eventually to cease.

Projecting the displacements onto f/H and recalculating the dispersion, one obtains the
curves in the lower panel of Figure 9. As in the topographic ridge case, the dispersion
anisotropy is evident at earlier times with the projected displacements, and the spread
across f/H contours is less than that across latitude lines. Interestingly, the results suggest
D z a t2, or that the along-contour motion is approximately shear dispersive. Given the
results of the previous sections, one might infer a strong mean � ow or single wave, oriented
along f/H contours.Again the cross contour dispersion increases throughout the duration of
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the experiment, although at a slower rate than over the ridges; one � nds that D h a t .35 at late
times.

Plots of the mean streamfunction (upper panel of Fig. 10) con� rm the presence of a
strong mean � ow whose streamfunction is anti-correlated with f/H. Moreover, the mean
� ow is the dominant dynamical element, as can be seen by comparing to the instantaneous
streamfunction (lower panel of Fig. 10), or the rms mean velocity (0.86) to the instanta-
neous value (0.95) at late times. It is well known (e.g. Bretherton and Haidvogel, 1976;
Holloway, 1978; 1992) that freely evolving turbulence over bumps develops a mean
streamfunction which is anti-correlated with the topography.4 In the present case the mean
dominates the late � ow, as well as the particle dispersion.

Projecting displacements onto f/H has thus removed anomalous dispersion. The reason
simply is that all particles are drifting at different speeds along f/H contours, whether in
regions of closed or open contours. The total dispersion in the projected frame is much
greater than in the zonal direction, because particles circulating around closed contours
contribute to the net along-contourdisplacement, even though they have effectively ceased

4. The � ow has been called the ‘‘Neptune effect’’ by Holloway (1992).

Figure 8. Trajectories for the cosine bump case, superimposedon f/H.
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Figure 9. Dispersion in the cosine bump case. The zonal and meridional dispersionare shown in the
upper panel, the dispersion relative to f/H in the lower panel.
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Figure 10. The mean (upper panel) and instantaneous (lower panel) streamfunctions for the cosine
bump case. The instantaneous� eld is from t 5 7.5. The contour values are [.05, .1, .3, .5, .7, .9].
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spreading in x; (as discussed in the Appendix, one could ‘‘reset’’ the z displacement after
each revolution around a closed contour, but this would obscure the shear dispersion).

Thus this case differs from the previous one because (1) particles can be trapped in
closed contour regions and (2) the mean dominates the � ow. In turn, spreading along f/H
contours is much greater than in either zonal or meridional directions. The dispersion
moreover increases quadratically in time, due to the strong mean. However, the topography
is still very idealized. Whether such tendencies carry over to more realistic topography is
examined next.

6. Random topography

In the last example, we consider dispersion over random topography. Studies freely
evolving turbulence over random topography include Bretherton and Haidvogel (1976)
and Holloway (1978).As did Bretherton and Haidvogel, we choose a topographic spectrum
dominated by the gravest modes and proportional to k 2 2, which is similar to the observed
topographic spectrum in the ocean. The resulting f/H � eld, and a subset of the resulting
particle trajectories, are shown in Figure (11). Because of the periodic domain, there is a
large-scale periodicity in the � eld, despite the fact that the topography is random.

Figure 11. Trajectories for the random bump case, superimposed on f/H.
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As in the cosine bumps case, some particles are trapped near closed contours, while
others wander in regions of open contours; instances of the latter are less frequent however,
presumedly due to the greater areal proportion of closed contour regions. The Cartesian
dispersion (Fig. 12) is anisotropic, and dominated by zonal spreading; however, a power
law dependence is not clear in either direction. It appears instead that the rate of spreading
is gradually decreasing in both directions.

Besides displaying increased anisotropy, the projected statistics (lower panel) suggest
simple shear dispersion along the contours. Indeed, the mean � ow (not shown) again is
dominant, with an rms velocity which is 84% as large as the instantaneous rms velocity.
Both measures of dispersion across contours suggest continued spreading, as in the
previous examples with topography.

From Bretherton and Haidvogel (1976) and Holloway (1978), we expect the mean � ow
to have a spatial structure which resembles a low-pass � ltered version of f/H (the degree of
� ltering depends on the total energy). As such, displacements ought to be projected onto a
low pass � ltered version of f/H rather than to the actual � eld itself. Doing so5 yields the
dispersion curves in dashed lines in the lower panel of Figure 12, and one observes the
cross contour dispersion is further suppressed. The along contour dispersion is not
appreciably changed, and is still shear dispersive.

7. Floats

As noted in the introduction, the present results might pertain to particle motion in the
deep ocean, below the region of wind forcing. To examine to what extent this is true,
trajectories from SOFAR and RAFOS � oats deployed in the North Atlantic during the
1970’s and 1980’s6 were used to calculate zonal and meridional dispersion, and dispersion
projected onto f/H. Only � oats deployed below 1000 m (the nominal depth of the
thermocline) and which lasted longer than 100 days were used; dispersion up to one year
was calculated. All � oats were taken together for the calculation, and no normalization
(e.g. Rupolo et al., 1996) was made. A more complete discussion of the data, of regional
variations and dynamical interpretations are presented in (LaCasce and Speer, 1999).

The trajectories used are shown in Figure 13, superimposed on the f/H � eld.7 One can
see a general tendency for � oats to follow the contours: for example, � oats in the eastern
Atlantic south of the Azores Plateau tend to spread more zonally than do those to their
north, and likewise the contours of f/H are more zonally oriented in the former region.

5. The � eld is Fourier-transformed in two dimensions, and the high wavenumber components removed with a
circular Butterworth � lter. The f/H � eld was � ltered to resemble the mean streamfunction.

6. The datasets come from the MODE, LDE, Eastern Basin, EUROFLOAT, ABACO, Canary Basin, Gulf
Stream, Gulf Stream Recirculation, Iberian Basin, Long Range, Northeastern Atlantic, PreLDE and Ring
experiments. Further information may be found at the WOCE Float Data Archive, http://wfdac.whoi.edu.

7. The f/H � eld for Figure 13 was calculated using a one degree topographicdata set. The f/H � eld used for the
calculations was made using etopo5, a topographic set with 1�12 degree resolution; horizontal scales smaller than
approximately 20 km were smoothed out using a two-dimensional low pass (spectral) � lter. A discussion of the
sensitivity of the results to smoothing is given in LaCasce and Speer (1999).
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Figure 12. Dispersion in the random bump case. The zonal and meridional dispersion are shown in
the upper panel, the dispersion relative to f/H in the lower panel. The solid lines in the lower � gure
correspond to dispersioncalculated relative to the actual f/H � eld, and the curves which are dashed
(at early times) relative to a smoothed version of f/H.



The dispersion in Cartesian coordinates is shown in the upper panel of Figure 14, and
that calculated relative to the f/H contours in the lower panel. The lowest curve in both
� gures represents the number of � oats used in the averages; there are about 160 � oats
initially, but fewer at late times.

The Cartesian dispersion (upper panel) is nearly isotropic and grows approximately
linearly in both directions, suggestive of diffusion in isotropic turbulence. In contrast, the
dispersion with respect to f/H is anisotropic from the outset, with the dispersion along
contours more than three times greater than across contours. The total cross-contour
dispersion is less than that across latitude lines, suggesting a greater resistance to crossing
f/H contours.The increase in dispersion is clearly linear in both directions, from roughly 15
days (a time comparable to the Lagrangian integral time scale) to one year. The results thus
suggest diffusion both along and across contours, with a larger diffusion ‘‘coefficient’’
along the contours. The same result is found in the ‘‘ridge’’ case above, i.e. one in which
there were no closed contours of f/H. While there are such closed contours in the North
Atlantic, most of the � oats are in open contour regions. However, the agreement between
data and model may be fortuitous.

Figure 13. SOFAR and RAFOS � oat trajectories in the North Atlantic superimposedon the f/H � eld
obtained from a one degree topographicdata set.
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Figure 14. Dispersion for the NorthAtlantic � oats. The zonal and meridionaldispersionare shown in
the upper panel, the dispersion relative to f/H in the lower panel. The 1�12 of a degree etopo5
topographic data set was used, smoothed to remove horizontal scales smaller than approximately
20 km.
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Considering subsets of � oats only in the west or eastern Atlantic yields the same result.
As discussed in the ensuing work (LaCasce and Speer, 1999), the mean displacements are
greatest along f/H, and indicate a pseudo-westward drift at this depth.We note these results
here only as evidence of the relevance of such ‘‘projected’’ statistics; as noted, a fuller
discussion of the application to � oat data is presented in LaCasce and Speer (1999).

8. Discussion

In barotropic � ows in which potential vorticity is conserved, particle dispersion is
preferentially along lines of f/H. Without topography, the spread of particles is greater
along latitude lines than across, and this anisotropy is evident when comparing the
dispersion in x and y directions. With topography, the f/H contours vary in (x, y), and as
such the dispersion anisotropy is more clearly evident for displacements along and across
contours of f/H itself.

In all the present cases, dispersion was more anisotropic relative to f/H. The primary
difference was between the rates of spreading. In terms of the along-f/H spreading, the rate
appears to depend on the number of Eulerian components present. In cases with a dominant
mean shear � ow, or a single Rossby wave, we obtain shear dispersion. If there were several
equally strong components, the increase in time was less than quadratic, e.g. in the ridge
case, where the increase was linear, consistent with along-contour diffusion. Interestingly,
the along-f/H dispersion was found to be either shear dispersive or diffusive in these
examples, even when the Cartesian measurements were suggestive of ‘‘anomalous’’
diffusion.

In the � at bottom cases considered, the across-f/H diffusion ceased after a short period of
time; one may argue that this must be so, given the conservation of both potential and
relative enstrophy. With topography, the dispersion across contours increased slowly over
the duration of the experiment (though we argue that it would eventually cease, given our
periodic domain). The rate of increase was at best linear in time, though it was slower in
cases with closed contours.

It should be emphasized that projecting displacements onto most f/H � elds will not
preserve distance; in other words, the total dispersion in the f/H and Cartesian frames will
not in general be equal.A simple example is when particles circle around a closed contour,
increasing their net along-contour displacement without really changing their position.
Nevertheless, the results can lead to qualitative insight into transport, as well as to possible
parameterizations.

As mentioned before, we have used a dissipative numerical model to study how PV
conservation affects dispersion. The agreement between the results of the simulation in
Section 3 with those of an inviscid, single wave calculation are reassuring. Nevertheless,
one must admit the possibility of quantitative changes in the rates of spreading when using
much higher resolution models.
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Though we have focused on the second moment of the displacements, we have
examined the � rst, third and fourth as well. The most useful of these is the � rst moment; in
the cases with closed f/H contours, the � rst moment decreased monotonically, consistent
with ‘‘westward’’ (relative to f/H ) advection by the mean � ow described earlier. In cases
without mean � ows, the mean drift along contours generally depended on the deployment
of particles, i.e., how many move ‘‘west’’ as opposed to ‘‘east.’’ In all cases the mean
displacement across f/H was near zero. We found strong variations in the skewness, with no
clear tendencies evident. The kurtosis in general was near the Gaussian value of 3, and
could not be used to differentiate runs. In our examinationof � oat data (LaCasce and Speer,
1999), we treat the � rst and second moments exclusively.

We have examined barotropic and unforced � ows, but of course the ocean is baroclinic
and forced by the wind. How the present results carry over to such cases will depend on a
number of factors, such as the relative importance of barotropic eddies. An obvious
baroclinic modi� cation would be to examine the relation to f/H, where h is the depth below
the thermocline. Such a study is underway, relative to RAFOS trajectories under the Gulf
Stream (Bower, 1997; personal communication).

Lastly, we have presented evidence that � oats in the North Atlantic also spread
preferentially along contours of f/H. The projected dispersion moreover was found to
increase linearly both along and across contours. This suggests that mixing in the deep
ocean may be represented as a diffusive process, with an along-contourdiffusivity which is
greater than the cross-contour diffusivity. This intriguing result will be discussed in more
detail in LaCasce and Speer (1999).
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APPENDIX

De� nition of moments

Consider a group of particles moving in (x, y). The mean zonal displacement from their
starting positions is de� ned:

Mx(t) ; 7 xi(t) 2 xi(t0)8 i, (11)

where the symbol 7 . . .8 i denotes the average over all particle paths, and My is similarly
de� ned. Given different starting positions xi(t0), such an average over particle paths is also
an average over all starting positions. For spatially homogeneous � ows, this approximates
an ensemble average, but not for inhomogeneous � ows. This is an important distinction in
the case of � ows with variable topography.
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The (absolute) zonal dispersion of the particles is de� ned:

Dx(t) ; 7 (xi(t) 2 xi(t0) 2 Mx(t))2 8 i, (12)

and the meridional dispersion is similarly constructed. The mean displacement of the
particles is removed, so dispersion re� ects the growth of the ‘‘cloud’’ about the center of
mass (with the same comments with regards to the loss of information about spatial
inhomogeneities applying). Higher order moments may also be de� ned:

G x(t) ;
7 (xi(t) 2 xi(t0) 2 Mx(t))n8 i

Dx
n/2

, (13)

where the normalization by the dispersion is traditional. The third order moment is the
skewness (Sx, Sy), and the fourth, the kurtosis (Kx, Ky). For a Gaussian distribution of
displacements, the higher order moments are predictable from the central limit theorem:
the skewness is zero, and the kurtosis is 3 (e.g. Papoulis, 1984).

The particle displacements are projected onto an arbitrary � eld as follows. Consider a
� eld, F(x, y), and a time series of particle positions xf(t) and yf (t):

xf 5 [xf (0), xf (1), xf(2), . . . xf(N )]. (14)

One may de� ne the displacements in both directions at each time:

D xf 5 [xf (1) 2 xf (0), xf (2) 2 xf (1), xf(3) 2 xf(2), . . .], (15)

and a similar expression for D yf. The displacements are projected onto the isolines of
F(x, y) by taking cross and dot products with the local gradient of F(x, y):

D z ; ( D xf, D yf) 3 ( = F/ * = F * ), (16)

and

D h ; ( D xf, D yf) · ( = F/ * = F * ), (17)

where z is the coordinate parallel to the isolines of F(x, y), and h the coordinate
perpendicular. The gradient is normalized to preserve the length of the displacement. The
positions along and across the curves are then found by summing; i.e. the jth element of the
position along the curve is:

z ( j) 2 z (t0) 5 o
k 5 1

k 5 j

D z (k), (18)

with a similar expression for h (t) 2 h (t0). Note that it makes no difference for the moments
that the initial positions are unknown. In the case of particles circling on closed contours,
one must make a decision whether to ‘‘reset’’ an effective azimuthal angle when calculating
distances; for the purposes of this paper, we chose not to. However, one could calculate the
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distances taking this into account. In any event, distance in general is not conserved after
the projection, or, D z 1 D h Þ Dx 1 Dy.

The moments are then constructed as before. For example, the dispersion along isolines
is de� ned:

D z (t) ; 7 ( z i(t) 2 z i(t0) 2 M z (t))28 i. (19)

The � eld used in the present work is the f/H � eld. The statistics thus describe how the
particles move relative to the isolines of f/H, e.g. whether there is a mean drift, dispersion
along/across isolines, etc.

A potential problem with the constructionas de� ned above is that summing the sequence
of displacements along and across contours is potentially numerically unstable. Errors
introduced at intermediate steps, usually from uncertainties in the � eld, propagate and
affect the net result (e.g. Henrici, 1982). The error magnitude and its growth in time may be
estimated as follows. Assuming an error in the position of the � oat, ( e x,(ti), e y(ti)), the
displacement array in Eq. (15) may be rewritten:

D xf 5 [xf (1) 2 xf (0) 1 e x(1) 2 e x(0), xf(2) 2 xf(1) 1 e x(2) 2 e x(1), . . .]. (20)

Resumming D xf yields the original positions, xf, with the initial position subtracted from
each element. The errors recombine similarly, so that position error at each point is the
same as the value prior to manipulation, minus the error at the initial position. But
projecting the displacements onto the isolines of f/H alters the errors; for simplicity,
consider only the contribution to the along/across displacement vectors which comes from
the dot product with the gradient f/H vector:

D xf · ( = F/ * = F * ) ; D xf · n 5 [(xf(1) 2 xf(0)) · n(1) 1 (e x(1) 2 e x(0)) · n(1), . . .]. (21)

The error in the gradient of f/H has been ignored; i.e., we assume that this � eld is known
perfectly; a similar analysis is possible when including such an error. In resumming this
displacement, adjacent errors no longer cancel, due to the multiplication by n. So one
obtains:

o ( D xf · n) 5 o
i 5 0

i 5 j 2 1

((xf (i 1 1) 2 xf (i))) · n(i) 1 o
i5 0

i5 j2 1

(e x(i 1 1) 2 e x(i)) · n(i). (22)

The � rst term on the RHS is the zonal contribution to h (tj) 2 h (0) in Eq. (17) (a similar
term is found for the meridional contribution).The second term is the error. One can gauge
the size of this term as follows. The vector, n, is less than or equal to unity, by the
normalization, and the magnitude of e depends on the accuracy of the � oat position. For
model � oats, that in turn depends on the accuracy of the particle advection scheme; for
actual � oats, the error depends on acoustical � xing of the position, etc. For the moment,
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call this error magnitude A. Then we have:

o
i 5 0

i 5 j 2 1

( e x(i 1 1) 2 e x(i)) · n(i) # o
i5 0

i5 j2 1

Ag (i), (23)

where g is an error of unit magnitude. Assuming the positional errors are random and
normally distributed with zero mean, the contribution to the mean displacement will
vanish. However, the dispersion involves squared differences, and so the g contribution
will not vanish. Consider the contribution to the squared cross-f/H displacement from this
zonal part:

h x( j)2 5 o
i 5 0

i 5 j 2 1

(D(i) 1 Ag (i))2, (24)

where h x
2 is that portion of the squared cross f/H displacement due to the zonal contribution,

and D(i) ; ( e x(i 1 1) 2 e x(i)) · n(i). Averaging over all particles yields:

7 h x( j)28 5 o
i5 0

i5 j2 1

7 D2(i) 8 1 2A 7 D(i) g (i) 8 1 A27 g 2(i) 8 . (25)

Assuming the errors in the positions are uncorrelated with the positions themselves (a
standard assumption; e.g. Batchelor and Townsend, 1953), the second term on the RHS
vanishes and the error is due solely to the third term (with a similar contribution from the
meridional displacement portion of h 2). Given a large enough collection of particles, and
under the assumption of Gaussian statistics for g (i), we have (e.g. Bendat and Piersol,
1986):

o
i5 0

i5 j2 1

A2 7 g 2(i)8 a (A2)j, (26)

or the error of the squared displacement grows linearly in time. Its magnitude is the square
of the position error itself. For the deep Atlantic � oats in Section 7, the late time dispersion
was also found to increase linearly in time, with a magnitude greater than 104 km2. The
squared positional error is generally O * (1 2 10) km2 * , so the contribution from the
projected errors is much smaller than the magnitude of the displacement itself. A similar
comparison for the model data reveals an even greater discrepancy, because the particle
position errors are very small.

Nevertheless, one may de� ne a second dispersion which does not suffer from such a
propagation of errors. That is the dispersion of the value of the � eld itself, as sampled by
the particle:

DF(t) ; 7 (Fi(t) 2 Fi(t0) 2 MF(t))28 i, (27)
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where Fi(t) is the value of the � eld observed by particle i at time t. For the f/H � eld, this
de� nes Df/H. Strictly speaking, this displacement is a more suitable companion for the
along contour displacement, z , because the displacement de� ned thus is independent of the
local gradient in the � eld. For example, in a region of strong gradients, a particle may not
cross a great distance before experiencing large changes in the mean PV. In regions of weak
gradients, the particle may wander over large distances before noticing a change in the
mean � eld. So a measure of the value of the � eld itself is preferable. However, D h is more
suitable for comparison with D z because both are squared distances, as are the dispersion in
zonal and meridional directions. Thus both measures of cross contour spreading have been
retained here.
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