378 research outputs found

    Infection of Human Coronary Artery Endothelial Cells by Group B Streptococcus Contributes to Dysregulation of Apoptosis, Hemostasis, and Innate Immune Responses

    Get PDF
    Early onset sepsis due to group B streptococcus leads to neonatal morbidity, increased mortality, and long-term neurological deficencies. Interaction between septicemic GBS and confluent monolayers of human coronary artery endothelial cells (HCAECs) was analyzed by genome wide expression profiling. In total, 124 genes were differentially expressed (89 upregulated, 35 downregulated) based on a more than 3-fold difference to control HCAEC. Regulated genes are involved in apoptosis, hemostasis, oxidative stress response, infection, and inflammation. Regulation of selected genes and proteins identified in the gene array analysis was confirmed by Real-time RT-PCR assay (granulocyte chemotactic protein 2), ELISA (urokinase, cyclooxygenase 2, granulocyte chemotactic protein 1), and western blotting (Heme oxygenase1, BCL2 interacting protein) at various time points between 4 and 24 hours. These results indicate that GBS infection might influence signalling pathways leading to impaired function of the innate immune system and hemorrhagic and inflammatory complications during GBS sepsis

    Modulation of the sympathetic nervous system by renal denervation prevents reduction of aortic distensibility in atherosclerosis prone ApoE-deficient rats

    Get PDF
    Apolipoprotein E-deficient (ApoE(-/-)) rodents spontaneously develop severe hypercholesterolemia and increased aortic stiffness, both accepted risk factors for cardiovascular morbidity and mortality in humans. In patients with resistant hypertension renal denervation (RDN) may improve arterial stiffness, however the underlying mechanisms are incompletely understood. This study investigates the impact of RDN on aortic compliance in a novel atherosclerosis prone ApoE(-/-)-rat model.Methods Normotensive, 8 weeks old ApoE−/− and Sprague–Dawley (SD) rats were subjected to bilateral surgical RDN (n = 6 per group) or sham operation (n = 5 per group) and fed with normal chow for 8 weeks. Compliance of the ascending aorta was assessed by magnetic resonance imaging. Vasomotor function was measured by aortic ring tension recordings. Aortic collagen content was quantified histologically and plasma aldosterone levels were measured by enzyme-linked immunosorbent assay (ELISA).Results After 8 weeks, ApoE−/−-sham demonstrated a 58 % decrease in aortic distensibility when compared with SD-sham (0.0051 ± 0.0011 vs. 0.0126 ± 0.0023 1/mmHg; p = 0.02). This was accompanied by an impaired endothelium-dependent relaxation of aortic rings and an increase in aortic medial fibrosis (17.87 ± 1.4 vs. 12.27 ± 1.1 %; p = 0.006). In ApoE−/−-rats, RDN prevented the reduction of aortic distensibility (0.0128 ± 0.002 vs. 0.0051 ± 0.0011 1/mmHg; p = 0.01), attenuated endothelial dysfunction, and decreased aortic medial collagen content (12.71 ± 1.3 vs. 17.87 ± 1.4 %; p = 0.01) as well as plasma aldosterone levels (136.33 ± 6.6 vs. 75.52 ± 8.4 pg/ml; p = 0.0003). Cardiac function and metabolic parameters such as hypercholesterolemia were not influenced by RDN.Conclusion ApoE−/−-rats spontaneously develop impaired vascular compliance. RDN improves aortic distensibility and attenuated endothelial dysfunction in ApoE−/−-rats. This was associated with a reduction in aortic fibrosis formation, and plasma aldosterone levels

    Modulation of the sympathetic nervous system by renal denervation prevents reduction of aortic distensibility in atherosclerosis prone ApoE-deficient rats

    Get PDF
    Apolipoprotein E-deficient (ApoE(-/-)) rodents spontaneously develop severe hypercholesterolemia and increased aortic stiffness, both accepted risk factors for cardiovascular morbidity and mortality in humans. In patients with resistant hypertension renal denervation (RDN) may improve arterial stiffness, however the underlying mechanisms are incompletely understood. This study investigates the impact of RDN on aortic compliance in a novel atherosclerosis prone ApoE(-/-)-rat model.Methods Normotensive, 8 weeks old ApoE−/− and Sprague–Dawley (SD) rats were subjected to bilateral surgical RDN (n = 6 per group) or sham operation (n = 5 per group) and fed with normal chow for 8 weeks. Compliance of the ascending aorta was assessed by magnetic resonance imaging. Vasomotor function was measured by aortic ring tension recordings. Aortic collagen content was quantified histologically and plasma aldosterone levels were measured by enzyme-linked immunosorbent assay (ELISA).Results After 8 weeks, ApoE−/−-sham demonstrated a 58 % decrease in aortic distensibility when compared with SD-sham (0.0051 ± 0.0011 vs. 0.0126 ± 0.0023 1/mmHg; p = 0.02). This was accompanied by an impaired endothelium-dependent relaxation of aortic rings and an increase in aortic medial fibrosis (17.87 ± 1.4 vs. 12.27 ± 1.1 %; p = 0.006). In ApoE−/−-rats, RDN prevented the reduction of aortic distensibility (0.0128 ± 0.002 vs. 0.0051 ± 0.0011 1/mmHg; p = 0.01), attenuated endothelial dysfunction, and decreased aortic medial collagen content (12.71 ± 1.3 vs. 17.87 ± 1.4 %; p = 0.01) as well as plasma aldosterone levels (136.33 ± 6.6 vs. 75.52 ± 8.4 pg/ml; p = 0.0003). Cardiac function and metabolic parameters such as hypercholesterolemia were not influenced by RDN.Conclusion ApoE−/−-rats spontaneously develop impaired vascular compliance. RDN improves aortic distensibility and attenuated endothelial dysfunction in ApoE−/−-rats. This was associated with a reduction in aortic fibrosis formation, and plasma aldosterone levels

    Altered vitamin K biodistribution and metabolism in experimental and human chronic kidney disease

    Get PDF
    Chronic kidney disease (CKD) is accompanied with extensive cardiovascular calcification, in part correlating with functional vitamin K deficiency. Here, we sought to determine causes for vitamin K deficiency beyond reduced dietary intake. Initially, vitamin K uptake and distribution into circulating lipoproteins after a single administration of vitamin K1 plus K2 (menaquinone 4 and menaquinone 7, respectively) was determined in patients on dialysis therapy and healthy individuals. The patients incorporated very little menaquinone 7 but more menaquinone 4 into high density lipoprotein (HDL) and low-density lipoprotein particles than did healthy individuals. In contrast to healthy persons, HDL particles from the patients could not be spiked with menaquinone 7 in vitro and HDL uptake was diminished in osteoblasts. A reduced carboxylation activity (low vitamin K activity) of uremic HDL particles spiked with menaquinone 7 vs. that of controls was confirmed in a bioassay using human primary vascular smooth muscle cells. Kidney menaquinone 4 tissue levels were reduced in 5/6-nephrectomized versus sham-operated C57BL/6 mice after four weeks of a vitamin K rich diet. From the analyzed enzymes involved in vitamin K metabolism, kidney HMG-CoA reductase protein was reduced in both rats and patients with CKD. In a trial on the efficacy and safety of atorvastatin in 1051 patients with type 2 diabetes receiving dialysis therapy, no pronounced vitamin K deficiency was noted. However, the highest levels of PIVKA-II (biomarker of subclinical vitamin K deficiency) were noted when a statin was combined with a proton pump inhibitor. Thus, profound disturbances in lipoprotein mediated vitamin K transport and metabolism in uremia suggest that menaquinone 7 supplementation to patients on dialysis therapy has reduced efficacy

    On mean and seasonal currents and transports at the western boundary of the equatorial Atlantic

    Get PDF
    Current measurements from two consecutive yearlong deployments of three moored stations at the western end of the equator in the Atlantic, along 44°W, are used to determine the northwestward flow of warm water in the upper several 100 m and of the southeastward counterflow of North Atlantic Deep Water (NADW). Measurements from three acoustic Doppler current profilers (ADCPs) looking upward from 300 m toward the surface allowed calculation of a time series of upper layer transports over 1 year. Mean transport through the array for the upper 300 m is 23.8 Sv with an annual cycle of only ±3 Sv that has its maximum in June-August and minimum in northern spring. Estimated additional mean northwestward transport in the range 300–600 m is 6.7 Sv, based on moored data and shipboard Pegasus and lowered ADCP profiling. In the depth range 1400–3100 m a current core with maximum annual mean southeastward speed of 30 cm s−1 is found along the continental slope that carries an estimated upper NADW transport of 14.2–17.3 Sv, depending on the extrapolation used between the mooring in the core and the continental slope. This transport is higher than off-equatorial estimates and suggests near-equatorial recirculation at the upper NADW level, in agreement with northwestward mean flow found about 140 km offshore. Below 3100 m and above the 1.8°C isotherm, only a small core of lower NADW flow with speeds of 10–15 cm s−1 is found over the flat part of the basin near 1.5°N, clearly separated from the continental slope by a zone of near-zero mean speeds. Estimated transport of that small current core is about 4.5 Sv, which is significantly below other estimates of near-equatorial transport of lower NADW and suggests that a major fraction of lower NADW may cross the 44°W meridian north of the Ceara Rise. Intraseasonal variability is large, although smaller than observed at 8°N near the western boundary. It occurs at a period of about 1 month when it is dominant in the near-surface records and corresponds to earlier observations in the equatorial zones of all oceans and at a period of about 2 months when it is dominant at the NADW level and could be imported either from the north along the boundary or from the east along the equator. The existence of an annual cycle in the deep currents of a few centimeters per second amplitude, as suggested by high-resolution numerical model results, could neither be proven nor disproven because of the high amount of shorter-period variability

    Mapping cardiac remodeling in chronic kidney disease

    Get PDF
    Patients with advanced chronic kidney disease (CKD) mostly die from sudden cardiac death and recurrent heart failure. The mechanisms of cardiac remodeling are largely unclear. To dissect molecular and cellular mechanisms of cardiac remodeling in CKD in an unbiased fashion, we performed left ventricular single-nuclear RNA sequencing in two mouse models of CKD. Our data showed a hypertrophic response trajectory of cardiomyocytes with stress signaling and metabolic changes driven by soluble uremia-related factors. We mapped fibroblast to myofibroblast differentiation in this process and identified notable changes in the cardiac vasculature, suggesting inflammation and dysfunction. An integrated analysis of cardiac cellular responses to uremic toxins pointed toward endothelin-1 and methylglyoxal being involved in capillary dysfunction and TNFα driving cardiomyocyte hypertrophy in CKD, which was validated in vitro and in vivo. TNFα inhibition in vivo ameliorated the cardiac phenotype in CKD. Thus, interventional approaches directed against uremic toxins, such as TNFα, hold promise to ameliorate cardiac remodeling in CKD.</p

    Circulation characteristics in three eddy-permitting models of the North Atlantic

    Get PDF
    A systematic intercomparison of three realistic eddy-permitting models of the North Atlantic circulation has been performed. The models use different concepts for the discretization of the vertical coordinate, namely geopotential levels, isopycnal layers, terrain-following (sigma) coordinates, respectively. Although these models were integrated under nearly identical conditions, the resulting large-scale model circulations show substantial differences. The results demonstrate that the large-scale thermohaline circulation is very sensitive to the model representation of certain localised processes, in particular to the amount and water mass properties of the overflow across the Greenland-Scotland region, to the amount of mixing within a few hundred kilometers south of the sills, and to several other processes at small or sub-grid scales. The different behaviour of the three models can to a large extent be explained as a consequence of the different model representation of these processes

    Observation of enhanced subthreshold K+ production in central collisions between heavy nuclei

    Get PDF
    In the very heavy collision system 197Au+197Au the K+ production process was studied as a function of impact parameter at 1 GeV/nucleon, a beam energy well below the free N-N threshold. The K+ multiplicity increases more than linearly with the number of participant nucleons and the K+/ pi + ratio rises significantly when going from peripheral to central collisions. The measured K+ double differential cross section is enhanced by a factor of 6 compared to microscopic transport calculations if secondary processes (Delta N-->K Lambda N and Delta Delta -->K Lambda N) are ignored
    corecore