1,800 research outputs found

    Bottom-up assembly of functional intracellular synthetic organelles by droplet-based microfluidics

    No full text
    Bottom-up synthetic biology has directed most efforts toward the construction of artificial compartmentalized systems that recreate living cell functions in their mechanical, morphological, or metabolic characteristics. However, bottom-up synthetic biology also offers great potential to study subcellular structures like organelles. Because of their intricate and complex structure, these key elements of eukaryotic life forms remain poorly understood. Here, the controlled assembly of lipid enclosed, organelle-like architectures is explored by droplet-based microfluidics. Three types of giant unilamellar vesicles (GUVs)-based synthetic organelles (SOs) functioning within natural living cells are procedured: (A) synthetic peroxisomes supporting cellular stress-management, mimicking an organelle innate to the host cell by using analogous enzymatic modules; (B) synthetic endoplasmic reticulum (ER) as intracellular light-responsive calcium stores involved in intercellular calcium signalling, mimicking an organelle innate to the host cell but utilizing a fundamentally different mechanism; and (C) synthetic magnetosomes providing eukaryotic cells with a magnetotactic sense, mimicking an organelle that is not natural to the host cell but transplanting its functionality from other branches of the phylogenetic tree. Microfluidic assembly of functional SOs paves the way for high-throughput generation of versatile intracellular structures implantable into living cells. This in-droplet SO design may support or expand cellular functionalities in translational nanomedicine

    Nature and origin of secondary mineral coatings on volcanic rocks of the Black Mountain, Stonewall Mountain, and Kane Springs Wash volcanic centers, southern, Nevada

    Get PDF
    The following subject areas are covered: (1) genetic, spectral, and LANDSAT Thematic Mapper imagery relationship between desert varnish and tertiary volcanic host rocks, southern Nevada; (2) reconnaissance geologic mapping of the Kane Springs Wash Volcanic Center, Lincoln County, Nevada, using multispectral thermal infrared imagery; (3) interregional comparisons of desert varnish; and (4) airborne scanner (GERIS) imagery of the Kane Springs Wash Volcanic Center, Lincoln County, Nevada

    Kitchen-Sink Enlightenment: A Review of “Grace for Amateurs”

    Full text link
    Excerpt: Here’s an honest admission: Several times while reading Lily Burana’s new book Grace for Amateurs: Field Notes on a Journey Back to Faith, I consulted the copyright page, confirming again that Grace for Amateurs was really published by Thomas Nelson, the notoriously evangelical (and, in my mind, notoriously traditional) press. After all, it wasn’t that long ago that Thomas Nelson asked another writer to remove the word “vagina” from her book, well aware that Christian readers would balk at language so closely associated with women and S-E-X. Would this same publisher be willing to support a memoir as edgy and progressive as Burana’s

    New Synthetic Tools in the Pyridine, Quinoline and Other Nitrogen-Heterocyclic Series

    Get PDF
    The halogen-metal interconversion reaction now makes possible the preparation of hitherto difficultly or completely inaccessible organolithium compounds from the corresponding bromo- or iodo-nuclear substituted nitrogen heterocycles by means of other organolithium compounds like n-propyllithium and n-butyllithium : C5H4NBr +n-C4H9Li ( 3-bromopyridine) → C5H4NLi +n-C4H9Br ( 3-pyridyllithium). These organolithium compounds of the nitrogen heterocycles are of a relatively high order of reactivity with other functional groups. Some of the types reported on in the pyridine series are: 1. 3-pyridyllithium in 70 per cent yield from 3-bromopyridine and n-butyllithium, 2. 3-quinolyllithium in 52 per cent yield from 3-bromopyridine, 3. 5-bromo-3-pyridyllithium in 41 per cent yield from 3, 5-dibromopyridine and slightly more than two equivalents of n-butyllithium. In the carbazole series, some of the organolithium compounds rep0rted are: 1. N-ethyl-2, 8-dilithiocarbazole in 84-91 per cent yield from N-ethyl-2, 8-dibromocarbazole, and in 79-92 per cent yield from the corresponding di-iodo-compound. 2. N-ethyl-2-lithiocarbazole 1 from the corresponding iodocarbazole in 68 per cent yield

    Biomarkers in melanoma

    Get PDF
    Biomarkers are tumour- or host-related factors that correlate with tumour biological behaviour and patient prognosis. High-throughput analytical techniques--DNA and RNA microarrays--have identified numerous possible biomarkers, but their relevance to melanoma progression, clinical outcome and the selection of optimal treatment strategies still needs to be established. The review discusses a possible molecular basis for predictive tissue biomarkers such as melanoma thickness, ulceration and mitotic activity, and provides a list of promising new biomarkers identified from tissue microarrays that needs confirmation by independent, prospectively collected clinical data sets. In addition, common predictive serum biomarkers--lactate dehydrogenase, S100B and melanoma-inhibiting activity--as well as selected investigational serum biomarkers such as TA90IC and YKL-40 are also reviewed. A more accurate, therapeutically predictive classification of human melanomas and selection of patient populations that would profit from therapeutic interventions are among the major challenges expected to be addressed in the futur

    Nature and origin of mineral coatings on volcanic rocks of the Black Mountain, Stonewall Mountain, and Kane Springs, Wash volcanic centers, Southern Nevada

    Get PDF
    LANDSAT Thematic Mapper imagery was evaluated over 3 Tertiary calderas in southern Nevada. Each volcanic center derived from a highly evolved silici magmatic system represented today by well exposed diverse lithologies. Distinctive imagery contrast between some of the late ash flows and earlier units follows from the high relative reflectance in longer wavelength bands (bands 5 and 7) of the former. Enhancement techniques provide color composite images which highlight some of the units in remarkable color contrast. Inasmuch as coatings on the tuffs are incompletely developed and apparently largely dependent spectrally on rock properties independent of petrochemistry, it is felt that the distinctive imagery characteristics are more a function of primary lithologic or petrochemical properties. Any given outcrop is backdrop for a variety of cover types, of which coatings, at various stages of maturity, are one. Petrographic and X-ray diffraction analysis of the outer air-interface zone of coatings reveal they are composed chiefly of amorphous compounds, probably with varying proportions of iron and manganese. Observations support an origin for some outer (air-interface) coating constituents exogenous to the underlying host

    Sampling Local Fungal Diversity in an Undergraduate Laboratory using DNA Barcoding

    Get PDF
    Traditional methods for fungal species identification require diagnostic morphological characters and are often limited by the availability of fresh fruiting bodies and local identification resources. DNA barcoding offers an additional method of species identification and is rapidly developing as a critical tool in fungal taxonomy. As an exercise in an undergraduate biology course, we identified 9 specimens collected from the Hendrix College campus in Conway, Arkansas, USA to the genus or species level using morphology. We report that DNA barcoding targeting the internal transcribed spacer (ITS) region supported several of our taxonomic determinations and we were able to contribute 5 ITS sequences to GenBank that were supported by vouchered collection information. We suggest that small-scale barcoding projects are possible and that they have value for documenting fungal diversity

    Palladium nanoparticles by electrospinning from poly(acrylonitrile-co-acrylic acid)-PdCl2 solutions. Relations between preparation conditions, particle size, and catalytic activity

    Get PDF
    Catalytic palladium (Pd) nanoparticles on electrospun copolymers of acrylonitrile and acrylic acid (PAN-AA) mats were produced via reduction of PdCl2 with hydrazine. Fiber mats were electrospun from homogeneous solutions of PAN-AA and PdCl2 in dimethylformamide (DMF). Pd cations were reduced to Pd metals when fiber mats were treated in an aqueous hydrazine solution at room temperature. Pd atoms nucleate and form small crystallites whose sizes were estimated from the peak broadening of X-ray diffraction peaks. Two to four crystallites adhere together and form agglomerates. Agglomerate sizes and fiber diameters were determined by scanning and transmission electron microscopy. Spherical Pd nanoparticles were dispersed homogeneously on the electrospun nanofibers. The effects of copolymer composition and amount of PdCl2 on particle size were investigated. Pd particle size mainly depends on the amount of acrylic acid functional groups and PdCl2 concentration in the spinning solution. Increasing acrylic acid concentration on polymer chains leads to larger Pd nanoparticles. In addition, Pd particle size becomes larger with increasing PdCl2 concentration in the spinning solution. Hence, it is possible to tune the number density and the size of metal nanoparticles. The catalytic activity of the Pd nanoparticles in electrospun mats was determined by selective hydrogenation of dehydrolinalool (3,7-dimethyloct-6- ene-1-yne-3-ol, DHL) in toluene at 90 °C. Electrospun fibers with Pd particles have 4.5 times higher catalytic activity than the current Pd/Al2O3 catalyst

    Biomarkers in melanoma

    Get PDF
    Biomarkers are tumour- or host-related factors that correlate with tumour biological behaviour and patient prognosis. High-throughput analytical techniques—DNA and RNA microarrays—have identified numerous possible biomarkers, but their relevance to melanoma progression, clinical outcome and the selection of optimal treatment strategies still needs to be established. The review discusses a possible molecular basis for predictive tissue biomarkers such as melanoma thickness, ulceration and mitotic activity, and provides a list of promising new biomarkers identified from tissue microarrays that needs confirmation by independent, prospectively collected clinical data sets. In addition, common predictive serum biomarkers—lactate dehydrogenase, S100B and melanoma-inhibiting activity—as well as selected investigational serum biomarkers such as TA90IC and YKL-40 are also reviewed. A more accurate, therapeutically predictive classification of human melanomas and selection of patient populations that would profit from therapeutic interventions are among the major challenges expected to be addressed in the future
    • …
    corecore