37 research outputs found

    Nutritional skewing of conceptus sex in sheep: effects of a maternal diet enriched in rumen-protected polyunsaturated fatty acids (PUFA)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Evolutionary theory suggests that in polygynous mammalian species females in better body condition should produce more sons than daughters. Few controlled studies have however tested this hypothesis and controversy exists as to whether body condition score or maternal diet is in fact the determining factor of offspring sex. Here, we examined whether maternal diet, specifically increased n-6 polyunsaturated fatty acid (PUFA) intake, of ewes with a constant body condition score around the time of conception influenced sex ratio.</p> <p>Methods</p> <p>Ewes (n = 44) maintained in similar body condition throughout the study were assigned either a control (C) diet or one (F) enriched in rumen-protected PUFA, but otherwise essentially equivalent, from four weeks prior to breeding until d13 post-estrus. On d13, conceptuses were recovered, measured, cultured to assess their capacity for interferon-tau (IFNT) production and their sex determined. The experiment was repeated with all ewes being fed the F diet to remove any effects of parity order on sex ratio. Maternal body condition score (BCS), plasma hormone and metabolite concentrations were also assessed throughout the study and related to diet.</p> <p>Results</p> <p>In total 129 conceptuses were recovered. Ewes on the F diet produced significantly more male than female conceptuses (proportion male = 0.69; deviation from expected ratio of 0.5, P < 0.001). Conceptus IFNT production was unaffected by diet (P > 0.1), but positively correlated with maternal body condition score (P < 0.05), and was higher (P < 0.05) in female than male conceptuses after 4 h culture. Maternal plasma hormone and metabolite concentrations, especially progesterone and fatty acid, were also modulated by diet.</p> <p>Conclusion</p> <p>These results provide evidence that maternal diet, in the form of increased amounts of rumen-protected PUFA fed around conception, rather than maternal body condition, can skew the sex ratio towards males. These observations may have implications to the livestock industry and animal management policies when offspring of one sex may be preferred over the other.</p

    Nutritional Skewing of Conceptus Sex in Sheep: Effects of a Maternal Diet Enriched in Rumen-Protected Polyunsaturated Fatty acids (PUFA)

    Get PDF
    doi:10.1186/1477-7827-6-21Evolutionary theory suggests that in polygynous mammalian species females in better body condition should produce more sons than daughters. Few controlled studies have however tested this hypothesis and controversy exists as to whether body condition score or maternal diet is in fact the determining factor of offspring sex. Here, we examined whether maternal diet, specifically increased n-6 polyunsaturated fatty acid(PUFA) intake, of ewes with a constant body condition score around the time of conception influenced sex ratio.The research was supported by USDA/CSREES/NRI Grant 2001-35203- 10693 (to RMR) and a Life Sciences Molecular Biology Fellowship, University of Missouri (partial salary support for MPG)

    Engineering protein processing of the mammary gland to produce abundant hemophilia B therapy in milk

    Get PDF
    Both the low animal cell density of bioreactors and their ability to post-translationally process recombinant factor IX (rFIX) limit hemophilia B therapy to transgenic pigs to make rFIX in milk at about 3,000-fold higher output than provided by industrial bioreactors. However, this resulted in incomplete γ-carboxylation and propeptide cleavage where both processes are transmembrane mediated. We then bioengineered the co-expression of truncated, soluble human furin (rFurin) with pro-rFIX at a favorable enzyme to substrate ratio. This resulted in the complete conversion of pro-rFIX to rFIX while yielding a normal lactation. Importantly, these high levels of propeptide processing by soluble rFurin did not preempt γ-carboxylation in the ER and therefore was compartmentalized to the Trans-Golgi Network (TGN) and also to milk. The Golgi specific engineering demonstrated here segues the ER targeted enhancement of γ-carboxylation needed to biomanufacture coagulation proteins like rFIX using transgenic livestock

    Engineering protein processing of the mammary gland to produce abundant hemophilia B therapy in milk

    Get PDF
    Both the low animal cell density of bioreactors and their ability to post-translationally process recombinant factor IX (rFIX) limit hemophilia B therapy to transgenic pigs to make rFIX in milk at about 3,000-fold higher output than provided by industrial bioreactors. However, this resulted in incomplete γ-carboxylation and propeptide cleavage where both processes are transmembrane mediated. We then bioengineered the co-expression of truncated, soluble human furin (rFurin) with pro-rFIX at a favorable enzyme to substrate ratio. This resulted in the complete conversion of pro-rFIX to rFIX while yielding a normal lactation. Importantly, these high levels of propeptide processing by soluble rFurin did not preempt γ-carboxylation in the ER and therefore was compartmentalized to the Trans-Golgi Network (TGN) and also to milk. The Golgi specific engineering demonstrated here segues the ER targeted enhancement of γ-carboxylation needed to biomanufacture coagulation proteins like rFIX using transgenic livestock

    In vitro development of in vivo-derived swine embryos after hyperosmotic treatment and centrifugation (the number of gilts providing embryos for this experiment was 21).

    No full text
    <p>In vitro development of in vivo-derived swine embryos after hyperosmotic treatment and centrifugation (the number of gilts providing embryos for this experiment was 21).</p

    Blastocyst development and number of nuclei in embryos after various osmolality treatments.

    No full text
    <p>(<sup>AB</sup>P<0.05; N = 160 for blastocyst development, and 113 for number of nuclei; 23 different gilts provided embryos for this experiment.).</p

    Improved cryopreservation of in vitro produced bovine embryos using FGF2, LIF, and IGF1.

    No full text
    In vitro embryo production systems are limited by their inability to consistently produce embryos with the competency to develop to the blastocyst stage, survive cryopreservation, and establish a pregnancy. Previous work identified a combination of three cytokines [fibroblast growth factor 2 (FGF2), leukemia inhibitory factor (LIF), and insulin-like growth factor 1 (IGF1)], called FLI, that we hypothesize improve preimplantation development of bovine embryos in vitro. To test this hypothesis, FLI was supplemented into oocyte maturation or embryo culture medium. Embryos were produced in vitro using abattoir-derived oocytes and fertilized with sperm from a single bull known to have high fertility. After an 18-20 h fertilization period, putative zygotes were cultured in synthetic oviductal fluid (SOF) for 8 days. The addition of FLI to the oocyte maturation medium increased (P < 0.05) the dissociation of transzonal projections at 12, 18, and 24 h of maturation, as well as, the proportion of oocytes that reached the metaphase II stage of meiosis. Additionally, lipid content was decreased (P < 0.05) in the blastocyst stage embryo. The addition of FLI during the culture period increased development to the blastocyst stage, cytoskeleton integrity, and survival following slow freezing, as well as, decreased post thaw cell apoptosis (P < 0.05). In conclusion, the supplementation of these cytokines in vitro has the potential to alleviate some of the challenges associated with the cryo-survival of in vitro produced bovine embryos through improving embryo development and embryo quality

    Dickkopf-related protein 1 inhibits the WNT signaling pathway and improves pig oocyte maturation.

    No full text
    The ability to mature oocytes in vitro provides a tool for creating embryos by parthenogenesis, fertilization, and cloning. Unfortunately the quality of oocytes matured in vitro falls behind that of in vivo matured oocytes. To address this difference, transcriptional profiling by deep sequencing was conducted on pig oocytes that were either matured in vitro or in vivo. Alignment of over 18 million reads identified 1,316 transcripts that were differentially represented. One pathway that was overrepresented in the oocytes matured in vitro was for Wingless-type MMTV integration site (WNT) signaling. In an attempt to inhibit the WNT pathway, Dickkopf-related protein 1 was added to the in vitro maturation medium. Addition of Dickkopf-related protein 1 improved the percentage of oocytes that matured to the metaphase II stage, increased the number of nuclei in the resulting blastocyst stage embryos, and reduced the amount of disheveled segment polarity protein 1 protein in oocytes. It is concluded that transcriptional profiling is a powerful method for detecting differences between in vitro and in vivo matured oocytes, and that the WNT signaling pathway is important for proper oocyte maturation
    corecore