2,212 research outputs found
Population Growth: A Pure Welfarist Approach
In this study we propose a framework based on welfarist principles to deal with several issues concerned with population economics models, such as the Repugnant Conclusion, both in absolute and relative sense, the shape of childbearing costs and population dynamics, under both normative and positive perspectives. We show that the relative critical level criterion can avoid both the assumption of high childbearing costs and the absolute repugnant conclusion (ARC) but cannot avoid the relative repugnant conclusion (RRC). Moreover, optimal fertility is increased by technological shocks and displays cycles. Both ARC and RRC can be avoided by extending the model to a decentralized economy with consumption externalities; in the latter model, a technological shock reduces longârun fertility and can generate cycles along the transitional path
Electron cloud buildup and impedance effects on beam dynamics in the future circular e+eâ collider and experimental characterization of thin TiZrV vacuum chamber coatings
The Future Circular Collider FCC-ee is a study toward a high luminosity electron-positron collider with a centre-of-mass energy from 91 GeV to 365 GeV. Due to the beam parameters and pipe dimensions, collective effects and electron cloud can be very critical aspects for the machine and can represent the main limitations to its performance. An estimation of the electron cloud build up in the main machine components and an impedance model are required to analyze the induced instabilities and to find solutions for their mitigation. Special attention has been given to the resistive wall impedance associated with a layer of nonevaporable getter (NEG) coating on the vacuum chamber required for electron cloud mitigation. The studies presented in this paper will show that minimizing the thickness of this coating layer is mandatory to increase the single bunch instability thresholds in the proposed lepton collider at 45.6 GeV. For this reason, NEG thin films with thicknesses below 250 nm have been investigated by means of numerical simulations to minimize the resistive wall impedance. In parallel, an extensive measurement campaign was performed at CERN to characterize these thin films, with the purpose of finding the minimum effective thickness satisfying vacuum and electron cloud requirements
Beam heat load analysis with COLDDIAG: a cold vacuum chamber for diagnostics
The knowledge of the heat intake from the electron beam is essential to design the cryogenic layout of superconducting insertion devices. With the aim of measuring the beam heat load to a cold bore and understanding the responsible mechanisms, a cold vacuum chamber for diagnostics (COLDDIAG) has been built. The instrumentation comprises temperature sensors, pressure gauges, mass spectrometers and retarding field analyzers, which allow to study the beam heat load and the influence of the cryosorbed gas layer. COLDDIAG was installed in the storage ring of the Diamond Light Source from September 2012 to August 2013. During this time measurements were performed for a wide range of machine conditions, employing the various measuring capabilities of the device. Here we report on the analysis of the measured beam heat load, pressure and gas content, as well as the low energy charged particle flux and
spectrum as a function of the electron beam parameters
Occurrence of gas phase ammonia in the area of Beijing (China)
The atmospheric concentrations of gaseous ammonia have been measured during two field campaigns in the winter and in the summer of 2007 at Beijing (China). These measurements were carried out by means of diffusion annular denuders coated with phosphorous acid. The results were discussed from the standpoint of temporal and diurnal variations and meteorological effects. The daily average NH<sub>3</sub> concentrations were in the range of 0.20â44.38 ÎŒg/m<sup>3</sup> and showed regular temporal variations with higher concentrations during summer and with lower during winter. The temporal trends seemed to be largely affected by air temperature because of agricultural sources. No diurnal variability was observed for gaseous NH<sub>3</sub> levels in both winter and summer seasons. The highest ammonia value of 105.67 ÎŒg/m<sup>3</sup> was measured in the early morning during the summer period when stable atmospheric conditions occurred. The diurnal winter and summer trends of ammonia showed a weak dependence on the air temperature and they were affected nearly by wind direction suggesting regional and local source influences. Ammonia was also correlated with the atmospheric mixing in the boundary layer, and, with NO<sub>x</sub>, CO and PM<sub>2.5</sub> air concentrations supporting the hypothesis that the traffic may be also an important source of ammonia in Beijing
Status of COLDDIAG: A Cold Vacuum Chamber for Diagnostics
One of the still open issues for the development of superconducting insertion
devices is the understanding of the beam heat load. With the aim of measuring
the beam heat load to a cold bore and the hope to gain a deeper understanding
in the beam heat load mechanisms, a cold vacuum chamber for diagnostics is
under construction. The following diagnostics will be implemented: i) retarding
field analyzers to measure the electron energy and flux, ii) temperature
sensors to measure the total heat load, iii) pressure gauges, iv) and mass
spectrometers to measure the gas content. The inner vacuum chamber will be
removable in order to test different geometries and materials. This will allow
the installation of the cryostat in different synchrotron light sources.
COLDDIAG will be built to fit in a short straight section at ANKA. A first
installation at the synchrotron light source Diamond is foreseen in June 2011.
Here we describe the technical design report of this device and the planned
measurements with beam.Comment: Presented at First International Particle Accelerator Conference,
IPAC'10, Kyoto, Japan, from 23 to 28 May 201
CERN SPS Impedance in 2007
Each year several measurements of the beam coupling impedance are performed in both longitudinal and transverse planes of the CERN Super Proton Synchrotron to keep track of its evolution. In parallel, after the extensive and successful campaign of identification, classification and cure of the possible sources of (mainly longitudinal) impedance between 1998 and 2001, a new campaign (essentially for the transverse impedance this time) has started few years ago, in view of the operation of the SPS with higher intensity for the LHC luminosity upgrade. The present paper summarizes the results obtained from the measurements performed over the last few years and compares them to our predictions. In particular, it reveals that the longitudinal impedance is reasonably well understood and the main contributors have already been identified. However, the situation is quite different in the transverse plane: albeit the relative evolution of the transverse impedance over the last few years can be well explained by the introduction of the nine MKE kickers necessary for beam extraction towards the LHC, significant contributors to the SPS transverse impedance have not been identified yet
SPS Impedance
For many years several measurements of the beam coupling impedance have been performed each year in both longitudinal and transverse planes of the CERN Super Proton Synchrotron to keep track of the evolution of its hardware. Copious types of equipments had to be modified or added in the past to allow the SPS to produce the nominal LHC beam. The next challenge would be the operation of the SPS with higher intensity for the LHC luminosity upgrade, which requires a good knowledge of the machine impedance and in particular of its major contributors. The current understanding of the measurements performed over the last few years is presented in this paper. In particular, this analysis reveals that the longitudinal impedance is reasonably well understood, while the situation is less satisfactory in the transverse planes, where about half of the measured impedance still needs to be identified
Recommended from our members
PROGRESS ON INSERTION DEVICE RELATED ACTIVITIES AT THE NSLS-II AND ITS FUTURE PLANS
National Synchrotron Light Source-II (NSLS-II) project is now in the construction stage. A new insertion device (ID) magnetic measurement facility (MMF) is being set up at Brookhaven National Laboratory in order to satisfy the stringent requirement on the magnetic field measurement of IDs. ISO-Class7 temperature stabilized clean room is being constructed for this purpose. A state-of-the-art Hall probe bench and integrated field measurement system will be installed therein. IDs in the project baseline scope include six damping wigglers, two elliptically polarizing undulators (EPUs), three 3.0m long in-vacuum undulators (IVUs) and one 1.5m long IVU. Three-pole wigglers with peak field over 1 Tesla will be utilized to accommodate the users of bending magnet radiation at the NSLS. Future plans includes: (1) an in-vacuum magnetic measurement system, (2) use of PrFeB magnet for improved cryo undulator, (3) development of advanced optimization program for sorting and shimming of IDs, (4) development of a closed loop He gas refrigerator, (5) switchable quasi-periodic EPU. Design features of the baseline devices, IDMMF and the future plans for NSLS-II ID activities are described
The Straw Tube Trackers of the PANDA Experiment
The PANDA experiment will be built at the FAIR facility at Darmstadt
(Germany) to perform accurate tests of the strong interaction through bar pp
and bar pA annihilation's studies. To track charged particles, two systems
consisting of a set of planar, closed-packed, self-supporting straw tube layers
are under construction. The PANDA straw tubes will have also unique
characteristics in term of material budget and performance. They consist of
very thin mylar-aluminized cathodes which are made self-supporting by means of
the operation gas-mixture over-pressure. This solution allows to reduce at
maximum the weight of the mechanical support frame and hence the detector
material budget. The PANDA straw tube central tracker will not only reconstruct
charged particle trajectories, but also will help in low momentum (< 1 GeV)
particle identification via dE/dx measurements. This is a quite new approach
that PANDA tracking group has first tested with detailed Monte Carlo
simulations, and then with experimental tests of detector prototypes. This
paper addresses the design issues of the PANDA straw tube trackers and the
performance obtained in prototype tests.Comment: 7 pages,16 figure
- âŠ