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Abstract 

In this work we propose a framework based on welfarist principles to deal with 

several issues concerned with population economics models, such as the Repugnant 

Conclusion, both in Absolute (see Parfit D, (1984). Reasons and Persons, Oxford/New 

York: Oxford University Press) and Relative sense (see Michel P, Pestieau P, (1998). 

Optimal Population Without Repugnant Aspects, Genus, 54 (3/4), 25-34), the shape 

of childbearing costs and population dynamics, under both normative and positive 

perspectives. We show that the basic formulation can avoid both the assumption of 

high childbearing costs and the Absolute Repugnant Conclusion (ARC) but cannot 

avoid the Relative Repugnant Conclusion (RRC). Moreover, optimal fertility is 

increased by technological shocks and displays cycles. Both ARC and RRC can be 

avoided by extending the model to a decentralized economy with consumption 

externalities; in the latter model, a technological shock reduces long run fertility and 

can generate cycles along the transitional path. 
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1. Introduction 

The study of population growth has a long tradition in economics1. Typically, welfarist principles 

are adopted2 such as Classical Utilitarianism (CU, or Benthamite approach), where the objective is the 

sum of the utilities over the population, or average utilitarianism (or Millian approach), where the 

objective is the welfare of a representative individual, or some mixture of both, such as Number 

Dampened Utilitarianism (NDU) proposed by Ng (1986)3. However, these approaches may pose several 

problems. For example, in the absence of convex childbearing costs, CU cannot avoid the Repugnant 

Conclusion (RC henceforth; see Parfit 1976, 1984, Blackorby et al. 2002), whereby any state in which 

each member of the population enjoys a life above neutrality is declared inferior to a state in which each 

member of a larger population lives a life with lower utility (Blackorby et al. 1995, 2002)4. In such a case, 

one should at any point in time drive individual consumption levels to neutrality, and typically (if 

neutrality consumption is zero) obtain the largest possible (infinite) population size. If there are 

physical constraints on reproductive capacity, at each point in time one should set the reproductive rate 

to its physical maximum. It is this counter-intuitive result that has been coined 'repugnant' in the 

literature, simply because there is no trade off between consumption per person and the number of 

individuals (a higher number of individuals is always preferred).  

                                                 
1 Optimal population growth has been firstly analysed by Samuelson (1975, 1976), Deardorff (1976) and, more recently, by 

Jaeger and Kuhle (2009), de la Croix et al. (2012), Pestieau and Ponthiere (2014). See Doepke (2008) for an in-depth review on 

this topic. 

2 Among works using non utilitarian principles (i.e. extensions of Pareto-dominance), see, for example, Golosov et al. (2007), 

who work with discrete fertility levels, and the discussion in Broome (1996). Michel and Wigniolle (2009) and Conde-Ruiz et 

al. (2010) use the Representative-Consumer and Millian efficiency criteria; respectively, for OLG models with children choices 

selected from a continuum. In these works, parents derive directly their utility from the number of children they bear, not from 

the utility of their descendants. In fact, as noted by Conde-Ruiz et al. (2010), such a criterion “might be regarded as a form of 

utilitarianism, called average utilitarianism” (p. 155). For a reconciliation between the benefit-cost analysis and the welfare-

based approach, see Mertens and Rubinchik (2017). 

3 More recently, NDU has been adopted in AK-growth models by Boucekkine and Fabbri (2013) and Marsiglio (2014).  

4 In fact, the debate can be dated back to the so-called Edgeworth’s conjecture (1925), according to which classical 

utilitarianism leads to a bigger population size and lower standard of living. 
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In models of economic growth à la Ramsey-Cass-Koopmans with endogenous population such a 

conclusion takes the form of an upper corner solution for the population growth rate (society reproduces 

at its physical maximum rate). The literature has tried to avoid RC (the corner property), by either 

modifying the social welfare criterion or introducing convex costs associated with the number of 

children each household has, which however might seem unsatisfactory from several points of view. 

NDU (as in the case of Becker-Barro, 1988)5, can avoid the RC, but as pointed out, among others, by 

Michel and Pestieau (1998), at the cost of two undesirable outcomes. The first is the requirement of high 

child-raising cost for an interior solution to exist (p. 25). In the words of Becker and Barro (1988) (p. 9): 

“consumption is positive only when children are a financial burden; that is, when the cost of rearing a 

child exceeds the present value of his lifetime earnings”6. The second is the so called relative RC (RRC). 

In the words of Michel and Perstieau (1998) (p. 27): “The relative repugnant solution occurs when any 

increase in the resources brought by each additional individual leads to a drop in equilibrium 

consumption.” (p. 27), that is an inverse relationship between equilibrium consumption and personal 

income. Although the authors do not provide further comments, we believe that the repugnancy of such 

an outcome consists in the fact that a growing economy would be associated with decreasing individual 

consumption (and thus decreasing individual utility), which does not seem a desirable outcome for a 

society.  

A possible way out of this problem is represented by Critical Level Utilitarianism (CLU), in which 

the objective function is derived from axioms (see Blackorby et al. 1995). The critical level is defined 

as a social utility value (α) of an extra person that, if added to the (unaffected) population, would make 

                                                 
5 Razin and Sadka (1995) interpret Barro-Becker’s approach as a compromise between Millian average utility and Benthamite 

sum of utilities. 

6 In NDU à la Becker-Barro, (1988) and Barro-Becker (1989) childbearing costs, although necessary to avoid RC, do not affect 

directly the steady state level of the population growth rate. Finally, such preferences do not satisfy the axiom of “Existence 

Independence of Unconcerned Individuals”, so that rankings of alternatives may depend on the utilities of unaffected people 

such as the long dead. See Blackorby et al. (2001). For other approaches, see, for example, Lagerlöf (2015). 



 4 

society as well off as without that person7. CLU can avoid the RC, in the sense it produces a trade off 

between individual consumption and population size, and producing interior solutions. Of course, in 

dynamic models, it can very well be the case that (if population growth is positive) population size 

grows infinite (in infinite time), but there is no desire to drive it to infinite in an instant or a desire to 

at each point in time have the highest physically possible population growth rate. Likewise, if 

population growth is negative, population would asymptotically disappear (in infinite time). However, 

again, there is no desire to make it disappear in an instant (which is the case for Average Utilitarianism), 

thus avoiding the corner property.  In principle, there is little guidance on what the critical level should 

be.  

The population literature has to a great extent focused on choice between population sizes often 

in a static framework (see, for example, Nerlove et al. 1982, 1985 and Shiell 2008). However, dynamic 

models have the possibility of addressing population over time, and thus analysing the distribution of 

population sizes over time (i.e. the population growth rate). 

One of the first attempts to characterize the problem in a dynamic setting with CLU dates back to 

Michel and Pestieau (1998), who show that both the RC (or, in their notation, absolute RC - ARC) and 

the relative RC (RRC) can only be avoided if α is above individual neutrality level (typically) and is not 

constant. However, they work in a simplified framework of a small open economy without economic 

growth. Moreover, they suggest a solution (setting the critical level as a function of the wage) that is “at 

odds” with that of the welfarist approach (Michel and Pestieau footnote 3, p. 30). 

Hence, we build on the intuition of Michel and Pestieau (1998) and we make a step further by 

introducing general equilibrium economic growth in a closed economy. 

Our research question is then the following: is there an axiomatically founded social welfare 

criterion that allows to avoid the RC without “unwanted side-results” (Michel and Pestieau 1998, p. 25) 

                                                 
7 Other possible solutions have been, as already mentioned, to incorporate the number of children as an argument of the utility 

function (see, for example, Borck 2011, Galor 2011; Prettner and Strulik 2016, Ehrlich and Kim 2015). In the spirit of the 

welfarist tradition we prefer to abstract from this assumption, by allowing for intergenerational altruism. 
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such as the RRC or too high childbearing costs, in a Cass-Koopmans-Ramsey economy8?  

On one hand, in the present paper we follow previous literature by defining the RC as an (upper) 

corner solution for the rate of growth of population9. We avoid endogenizing technological progress 

because we want to keep our analysis as close as possible to the Cass-Koopmans-Ramsey approach and 

to focus not only on steady states, but also on intertemporal redistribution issues through richer 

transitional dynamics. 

More in detail, we wish to contribute to this debate by proposing a new population criterion, 

“Relative Critical Level Utilitarianism” (RCLU), where the criterion is axiomatically founded and is the 

critical level allowed to depend on past utility levels. It allows for non-trivial intergenerational 

comparisons. If an economy is at a low consumption level, we argue that ethically individuals should 

not be prevented from being born because of a fixed critical level being too high, or if the economy is 

at a high consumption level, the constant critical level would induce a large increase in population size. 

A more flexible criterion is when the critical level depends positively on past consumption. If past 

consumption was low, there would still be a desire to reproduce, since the critical level is also lower. 

We develop the Relative Critical Level Utility criterion and study its properties in terms of population 

growth rates (and thereby the distribution of population over time), consumption, and capital 

accumulation. Since our analysis is more general than the previous literature we can also compare our 

results with the special cases of constant critical level (CLU) and classical utilitarianism (when the 

critical level is zero). Through this approach, which is normative in nature, we will show that while RC 

and high childbearing costs can be avoided, RRC still persists and optimal population growth is 

positively affected by technological shocks, although displaying nontrivial dynamics (i.e. cycles). 

RRC has not received the same attention as RC in population economics literature, and one might 

even question whether the former is really repugnant. Although the discussion of the philosophical 

                                                 
8 As already mentioned, several authors (i.e. Palivos and Yip 1993; Razin and Yuen 1995; Boucekkine and Fabbri 2013; and 

Marsiglio 2014) have analysed the relationship between social preferences, economic growth and endogenous fertility in 

endogenous growth models. An example of endogenous growth model with endogenous population growth and RCLU is 

contained in Renström and Spataro (2015). 

9 On this issue see Renström and Spataro (2011) and Spataro and Renström (2012). 
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implications of RRC is beyond the scope of the present paper, we argue that both the RRC and the issue 

of the assumption of high childbearing costs are relevant also for theoretical and positive arguments. 

In fact, as already noticed, most existing models with endogenous population need to assume high costs 

for childbearing and, moreover, would predict a negative relation between individual’s income and 

consumption. However, both the assumption and the conclusion are unsatisfactory, being at odds with 

the consolidated empirical evidence. 

Hence, in the second part of the paper we extend the model to the case in which externalities in 

consumption exist (somewhat in line with the “Catching-up with the Jones” literature) and, following 

most existing literature (including Becker-Barro 1988 and Barro-Becker 1989) we here adopt a 

positive approach. In this scenario (in which the decentralized equilibrium will be suboptimal due to 

the presence of consumption externalities), we show that both RC and RRC can be avoided under 

reasonable assumptions on preferences and childbearing costs. Moreover, we will show that cycles 

may appear around the steady state and that, differently from previous model, an increase of total 

factor productivity reduces fertility. 

Some final comments are in order. First, we depart from previous recent literature on optimal 

population size, mostly concerned with OLG economies or with endogenous growth models, in that we 

focus on infinitely lived dynasties (each generation lives for one period), with zero per capita growth 

(the only source of growth being population), for the sake of comparability with the original 

contributions of Becker-Barro (1988), Barro-Becker (1989) and Michel and Pestieau (1998). Second, 

for the same reason and without loss of generality, we run our analysis in discrete time. Third, although 

we restrict our analysis on symmetric equilibria, we show that the RCLU criterion can be also used 

when the source of heterogeneity is not between generations, but also within generations. The analysis 

of the latter case, allowed for in the formal derivation of the RCLU criterion in the Appendix, is left for 

future research. 

The paper is organized as follows: in section 2 we present the model under the normative 

perspective, in subsection 2.3 we provide the solution and in subsection 2.4 we discuss the existence 

and the stability of the long run equilibrium and discuss the effects of technological shocks on optimal 

capital intensity, per capita consumption and fertility. In subsection 2.5 we comment our results with 
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a focus on the role of our critical level function. In section 3 we adopt a positive approach and extend 

the model to the case of a decentralized economy with atomistic dynasties where each dynasty does 

not recognize its influence on critical level consumption. Finally, an Appendix contains the axiomatic 

foundation of RCLU and the Proofs of Propositions. 

 

2. Normative perspective: the centralized economy 

We start our analysis under a normative perspective. For doing this, in the present section we 

build up the model structure of a centralized economy and present the results. The extension to a 

decentralized economy that will be used for the positive analysis will be presented in section 3. 

2.1 Preferences 

We concentrate on a single dynasty (household) or a policymaker choosing consumption and 

population growth over time, so as to maximize: 

𝑊(𝑢𝑡−1, 𝑁𝑡 , 𝑢𝑡 , 𝑁𝑡+1 … ) = ∑ 𝛽𝑠∞
𝑠=0 𝑁𝑡+𝑠[𝑢𝑡+𝑠 − �̂�(𝑢𝑡−1+𝑠)]     (1) 

where N is the population (family) size, u the instantaneous utility function, 𝛽 ∈ (0,1) the 

intergenerational discount factor and �̂�(𝑢𝑡−1+𝑠) is the critical level utility. In Appendix A we show that 

this is the only formulation satisfying: Independence of the Long Dead, Parental Dependence, 

Stationarity, Independence of Distant Future Generations, Independence of Utilities of Unconcerned 

Individuals, Anonymity, Strong Pareto and Relative Critical Level Dependence. 

Note that, differently from previous literature, we allow such a critical value to be a function of 

previous generation’s utility (only if �̂�(𝑢𝑡−1+𝑠) is a constant this social ordering would coincide with 

CLU). We call our population criterion “Relative CLU” (RCLU). More precisely, it seems plausible to 

assume �̂�′ > 0 (that is, the higher utility/consumption of parents, the higher CLU). 

Hence, we propose a population criterion in the spirit of CLU, but where the judgment (the 

critical level of utility for life worth living) is relative to the existing generation’s level of wellbeing. 

According to such a criterion, a society at low level of utility sets a lower threshold of utility for the next 

generation, and a society with high living standard sets a higher level. So if parents had a good life, they 

require their children to have a good life as well, and vice versa. We call such a criterion Relative Critical 

Level Utilitarianism (RCLU). It is reasonable that societies 10000 years ago had an entirely different 
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target level of utility for life worth living than societies today. Also, societies following the more flexible 

population criterion will find it easier to adapt to fluctuations in the external environment. For example, 

if food resources become scarce for a period and utility falls below an absolute critical level, society does 

not stop reproducing under RCLU, but may still view life worth living if the children have a utility related 

to parent’s utility. Societies following (absolute) CLU may become extinct as they stop reproducing when 

utility for a number of generations fall below the absolute threshold level.  

As for population dynamics, we denote the population growth rate as nt, i.e. 

𝑁𝑡+1 = (1 + 𝑛𝑡)𝑁𝑡.           (2) 

Furthermore, we assume that there are exogenous lower and upper bounds on the population growth 

rate: 𝑛𝑡 ∈ [𝑛, �̅�]. Realistically, there is a physical constraint at each period of time on how many children 

a parent can have. There is also a constraint on how low the population growth can be. The reason for 

the latter assumption is twofold: first, we do not allow individuals to be eliminated from the population 

(in that there is no axiomatic foundation for that); moreover, even if nobody wants to reproduce there 

will always be accidental births (we will also assume that 𝑛 > −1: population cannot disappear in one 

period). 

Equation (1) can also be written as10: 

𝑊 = ∑ 𝛽𝑡∞
𝑡=0 [𝑁𝑡𝑢(𝑐𝑡) − 𝑁𝑡−1𝛼(𝑐𝑡−1)] = ∑ 𝛽𝑡∞

𝑡=0 𝑁𝑡[𝑢(𝑐𝑡) − 𝛼(𝑐𝑡)𝛽(1 + 𝑛𝑡)] − 𝛼(𝑐−1)𝑁0 (3) 

where 𝑢(𝑐𝑡) is the intratemporal utility level, with 𝑢′ > 0, 𝑢′′ < 0, and 𝛼(𝑐𝑡) the critical level function 

and 𝛼(𝑐−1) and 𝑁0 given at period 0. We follow the standard convention in population ethics and 

normalize lifetime utilities so that a lifetime-utility level of zero represents neutrality, hence 𝑢(0) = 0 

(see Blackorby et at. 2002 and 2005, chap. 2 and the references therein). Note that the sum in eq. (3) is 

finite only if 𝛽(1 + �̅�) < 1, which we assume throughout the paper, as it is standard in growth models 

(see for example Barro and Becker 1989, eq. 24). Even though 𝑁𝑡 can go to infinity in the long run, we 

can still use (3) as the objective function if lim
𝑇→∞

𝛽𝑇𝑁𝑇 = 0. In fact, this is the transversality condition, 

which we will show is satisfied (see footnote 12). This is also why we choose to present the optimization 

problem with N as a state and n as a control (and also to detect possible corners for n). 

                                                 
10 Without loss of generality we have redefined the critical level function as �̂�(𝑢𝑡−1+𝑠) ≡ 𝛼(𝑐𝑡−1+𝑠). 
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2.2. Technology 

Assuming a constant returns-to-scale (CRS) production technology, 𝐹(𝐾𝑡 , 𝐿𝑡) = 𝐴𝑡𝐺(𝐾𝑡 , 𝐿𝑡), 

with At the parameter representing total factor productivity, and a zero capital depreciation, the capital 

accumulation equation is: 

𝐾𝑡+1 = 𝐹(𝐾𝑡, 𝑁𝑡) + 𝐾𝑡 − 𝑐𝑡𝑁𝑡 − 𝜃(𝑛𝑡)𝑁𝑡        (4) 

where 𝜃(𝑛𝑡) is the unit cost for raising children. For the sake of tractability and in the spirit of Barro-

Becker (1988) and Michel-Pestieau (1998), 𝜃(𝑛𝑡) is assumed to be a linear function. Moreover, it is 

normalised in such a way that when n=0, the per-adult cost is exactly equal to , because in this case 

population is constant, i.e. each adult gives birth to one child. Hence, 𝜃(𝑛𝑡) = 𝜃 ∙ (1 + 𝑛𝑡). 

2.3 Solution 

The Lagrangean function associated with the household’s problem is the following: 

𝐿𝑡 = ∑ {𝛽𝑡∞
𝑡=0 𝑁𝑡[𝑢(𝑐𝑡) − 𝛼(𝑐𝑡)𝛽(1 + 𝑛𝑡)] + 𝑞𝑡[𝐹(𝐾𝑡 , 𝑁𝑡) + 𝐾𝑡 − 𝐾𝑡+1 − 𝑐𝑡𝑁𝑡 − 𝜃(1 + 𝑛𝑡)𝑁𝑡] + 𝜆𝑡[(1 +

𝑛𝑡)𝑁𝑡 − 𝑁𝑡+1] + 𝜈𝑡(�̅� − 𝑛𝑡) + 𝜗(𝑛𝑡 − 𝑛)}       (5) 

where we have omitted the term −𝛼(𝑐−1)𝑁0 from eq. (3) as it is a constant at date 0. The term 

𝜆𝑡[(1 + 𝑛𝑡)𝑁𝑡 − 𝑁𝑡+1] in the Lagrangean function associated with eq. (2) captures the fact that at each 

time period the population size is given (and thus is a state variable) and can only be controlled by the 

choice of n (which is a control variable). The law of motion for the population size is provided by (2). 

Hence, λt can be interpreted as the shadow value of population. 

The first order conditions of the problem imply: 

𝜕𝐿

𝜕𝑐𝑡
= 𝛽𝑡𝑁𝑡[𝑢′(𝑐𝑡) − 𝛼′(𝑐𝑡)𝛽(1 + 𝑛𝑡)] − 𝑁𝑡𝑞𝑡 = 0 ⇒ 𝛽𝑡[𝑢′(𝑐𝑡) − 𝛼′(𝑐𝑡)𝛽(1 + 𝑛𝑡)] = 𝑞𝑡   (6) 

𝜕𝐿

𝜕𝑛𝑡
= −𝛽𝑡+1𝑁𝑡𝛼(𝑐𝑡) − 𝑞𝑡𝜃𝑁𝑡 + 𝜆𝑡𝑁𝑡 = 0 ⇒ 𝜆𝑡 = 𝛽𝑡+1𝛼(𝑐𝑡) + 𝑞𝑡𝜃     (7) 

and from (6), eq. (7) becomes 

𝜆𝑡 = 𝛽𝑡+1𝛼(𝑐𝑡) + 𝛽𝑡[𝑢′(𝑐𝑡) − 𝛼′(𝑐𝑡)𝛽(1 + 𝑛𝑡)]𝜃 .       (8) 

The other FOCs yield: 

𝜕𝐿

𝜕𝑁𝑡
= 𝛽𝑡[𝑢(𝑐𝑡) − 𝛼(𝑐𝑡)𝛽(1 + 𝑛𝑡)] + 𝑞𝑡[𝐹𝑁𝑡

− 𝑐𝑡 − 𝜃(1 + 𝑛𝑡)] + 𝜆𝑡(1 + 𝑛𝑡) − 𝜆𝑡−1 = 0  (9) 

𝜕𝐿

𝜕𝐾𝑡+1
= −𝑞𝑡 + 𝑞𝑡+1(1 + 𝐹𝐾𝑡+1

) = 0          (10) 
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eqs. (2) and (4). Let us define the capital intensity 𝑘 ≡ 𝐾/𝑁, such that, by exploiting CRS in the 

production function and assuming that L=N we can write: 𝐹(𝐾, 𝑁) = 𝑁𝑓(𝑘), 𝐹𝑁 = 𝑓(𝑘) − 𝑓′𝑘 . 

Moreover, using (6), and adapting 𝑞𝑡+1 from (10) into (6) we get: 

𝑢′𝑡+1−𝛼′𝑡+1𝛽(1+𝑛𝑡+1)

𝑢′𝑡−𝛼′𝑡𝛽(1+𝑛𝑡)
=

1

𝛽(1+𝐹𝐾𝑡+1)
         (11) 

Furthermore, backward shifting (8) and (10) and plugging into (9) and using (8) and (6) we have: 

𝑢𝑡 − 𝛼𝑡−1 = [𝑢𝑡
′  − 𝛼𝑡

′𝛽(1 + 𝑛𝑡)]{𝑐𝑡 − 𝐹𝑁𝑡
+ 𝜃(1 + 𝐹𝐾𝑡

)}        (12) 

Hence, eqs. (11), (12), eq. (4) in per capita terms, that is: 

(1 + 𝑛𝑡)𝑘𝑡+1 = 𝑓𝑡 + 𝑘𝑡 − 𝑐𝑡 − 𝜃(1 + 𝑛𝑡)        (13) 

fully characterize our dynamic system. Equation (12) states that, at the optimum, both consumption and 

fertility should be chosen in such a way that the addition to social welfare of increasing the population 

at the margin, 𝑢𝑡 − 𝛼𝑡−1, should equal the marginal value (in utility units) of what a new-born net takes 

out of society, [𝑢𝑡
′  − 𝛼𝑡

′𝛽(1 + 𝑛𝑡)]{𝑐𝑡 − 𝐹𝑁𝑡
+ 𝜃(1 + 𝐹𝐾𝑡

)}. The term in square brackets is the marginal 

utility value of capital, and the term in curly brackets is the difference between what she consumes, 𝑐𝑡 +

𝜃(1 + 𝐹𝐾𝑡
) and what she brings, 𝐹𝑁𝑡

 (the marginal value of labor). The intertemporal price enters 

because the child cost occurs in the previous period. We should notice that if the per capita capital stock 

is larger, then the individual brings more in terms of the labour endowment, and the intertemporal price 

is also lower. Furthermore, the marginal value of capital 𝛽−𝑡𝑞𝑡 (from eq. (6)) is also lower, implying the 

right hand side of (12) is lower. Thus, for larger per capita capital stock, the individual takes out less 

from society. This means a lower level of per capita consumption is required for being indifferent 

bringing more individuals into being (left hand side of 12). 

2.3.1. The steady-state equilibrium 

From eqs. (11), (13) and (12) respectively, the steady-state solutions for capital intensity (𝑘∗), 

population growth rate (𝑛∗) and per capita consumption (𝑐∗) follow: 

𝑓′∗ =
1

𝛽
− 1            (14) 

1 + 𝑛∗ =
𝑓∗+𝑘∗−𝑐∗

𝑘∗+𝜃
           (15) 
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𝑐∗:
𝑢∗−𝛼∗

𝑘∗+𝜃
=

[𝑢′∗−𝛼′∗𝛽(1+𝑛∗)]

𝛽
[1 − 𝛽(1 + 𝑛∗)]  11       (16) 

(where the equality in (16) stems from (12) and (14)). It should be noticed that the transversality 

conditions will hold12.  

Some comments on the solution are worth noting. Eq. (14) pins down a unique positive value of 

steady-state capital intensity 𝑘∗, as is standard in a Cass-Koopmans-Ramsey models. Eq. (15) states that 

at the optimum both fertility, 𝑛∗ and consumption, 𝑐∗ must satisfy the resources available for the 

economy. 

2.4. Results 

2.4.1. Existence of the interior equilibrium 

In this subsection we will provide the conditions for the existence of a steady state solution with 

interior n (i.e. avoidance of the RC). Moreover, we will pinpoint the conditions for avoiding the 

assumption of a too high childbearing cost (common in the previous literature). Preliminarily, from eqs. 

(14)-(15) and using CRS (so that 𝑓∗ = 𝑓∗ − 𝑘∗𝑓′∗
+ 𝑘∗𝑓′∗

= 𝐹𝑁
∗ + 𝑘∗𝑓′∗

), eq. (15) becomes: 

𝑐 = 𝐹𝑁
∗ +

𝑘∗

𝛽
− (1 + 𝑛) ∙ (𝑘∗ + 𝜃)                   (15’) 

Let us define 𝑐𝑚𝑎𝑥 and 𝑐𝑚𝑖𝑛 as follows: 

𝑐𝑚𝑎𝑥 ≡ 𝐹𝑁
∗ +

𝑘∗

𝛽
            (17) 

𝑐𝑚𝑖𝑛 ≡ 𝐹𝑁
∗ −

𝜃

𝛽
            (18) 

where 𝑐𝑚𝑎𝑥 is the solution for 𝑐 of (15) if 1 + 𝑛 = 0 (lower bound for 𝑛 = −1, population disappears in 

one period) and 𝑐𝑚𝑖𝑛 is the solution for 𝑐 of (15) if (1 + 𝑛)𝛽 = 1 (upper bound for 𝑛 =
1−𝛽

𝛽
, the objective 

                                                 
11 Notice, that, by eq. (6), [𝑢′ − 𝛼′𝛽(1 + 𝑛)] > 0, that is, along the optimal path, marginal utility of consumption in the Social 

Welfare function must be positive. Hence, by (16), assumption 𝛽(1 + �̅�) < 1, at the optimum 𝑢 − 𝛼 > 0 (the social marginal 

benefit of a new born must be positive). 

12 Transversality conditions read as lim
𝑇→∞

𝑞𝑇𝐾𝑇 = 0 and lim
𝑇→∞

𝜆𝑇𝑁𝑇 = 0. From (6) 𝑞𝑇𝐾𝑇 = [𝑢′ − 𝛼′𝛽(1 + 𝑛)]𝛽𝑇𝐾𝑇 = [𝑢′ −

𝛼′𝛽(1 + 𝑛)]𝑘𝛽𝑇𝑁𝑇. If 𝑐, 𝑛, 𝑘 go to a steady state, the first transversality condition becomes: lim
𝑇→∞

𝛽𝑇𝑁𝑇 = 0, which is also the 

second transversality condition (following from eq. (8)). Finally, lim
𝑇→∞

𝛽𝑇𝑁𝑇 = lim
𝑇→∞

∏ 𝛽(1 + 𝑛𝑡)𝑁0 = 0𝑇−1
𝑡=0 , last equality follows 

from 𝛽(1 + 𝑛𝑡) ≤ 𝛽(1 + �̅�) < 1. 
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function (3) explodes). Both 𝑐𝑚𝑖𝑛 and 𝑐𝑚𝑎𝑥 are parametrically given numbers (for example, under Cobb-

Douglas production function 𝑓 = 𝐴𝑘𝛾 and, normalizing A such that steady state per capita GDP equals 

unity, we have 𝑐𝑚𝑎𝑥 = 1 − 𝛾 +
𝛾

1−𝛽
 and 𝑐𝑚𝑖𝑛 = 1 − 𝛾 −

𝜃

𝛽
).  

Hence, it follows that parameter restrictions for an interior solution for n must be such that the 

equilibrium per capita consumption lies in the interval: 𝑐∗ ∈ (𝑐𝑚𝑖𝑛, 𝑐𝑚𝑎𝑥). Recognizing that (15’) can be 

written as 1 + 𝑛 =
𝑐𝑚𝑎𝑥−𝑐

𝑘+𝜃
 and substituting for (1 + 𝑛) into (16) and exploiting 𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛 =

𝑘+𝜃

𝛽
> 0, 

eq. (16) reads as: 

𝑢∗−𝛼∗

𝑢′∗−𝛼′∗ = (𝑐∗ − 𝑐𝑚𝑖𝑛) +
𝛼′∗

𝑢′∗−𝛼′∗

(𝑐∗−𝑐𝑚𝑖𝑛)
2

𝑐𝑚𝑎𝑥−𝑐𝑚𝑖𝑛        (19) 

Now we can provide the following Proposition concerning existence and uniqueness of an interior 

solution at the steady state (we omit stars superscripts for the sake of readability). 

Proposition 1: Necessary and sufficient for existence of a unique interior steady state equilibrium is: 

   𝑢(𝑐𝑚𝑎𝑥) − 𝑢′(𝑐𝑚𝑎𝑥) ∙ (𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛) > 𝛼(𝑐𝑚𝑎𝑥) 

and  

I) If 𝑐𝑚𝑖𝑛 < 0, 
𝑢(0)−𝛼(0)

𝑢′(0)−𝛼′(0)
≤ 0; 

II) If 𝑐𝑚𝑖𝑛 > 0, 𝑢(𝑐𝑚𝑖𝑛) <  𝛼(𝑐𝑚𝑖𝑛). 

Proof: Proof: See Appendix C.         □ 

The conditions contained in the above Proposition are concerned with the shape of individual’s 

preferences and the critical level function on the relevant domain. The first condition tells that the 

critical level function cannot be too large in relation to utility for large consumption levels (𝑢(𝑐𝑚𝑎𝑥) −

𝑢′(𝑐𝑚𝑎𝑥) ∙ (𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛) > 𝛼(𝑐𝑚𝑎𝑥)). Part I) and part II) are related to the critical-level-consumption 

level �̃�, for which 𝑢(�̃�) = 𝛼(�̃�), which is required lying in the relevant consumption range (𝑐𝑚𝑖𝑛, 𝑐𝑚𝑎𝑥). 

If 𝑐𝑚𝑖𝑛 < 0, one needs 𝑢(0) <  𝛼(0), so that �̃� lies above zero; If 𝑐𝑚𝑖𝑛 > 0, one needs 𝑢(𝑐𝑚𝑖𝑛) <

 𝛼(𝑐𝑚𝑖𝑛), so that �̃� lies above 𝑐𝑚𝑖𝑛. Therefore both 𝑢(𝑐) and 𝛼(𝑐) must cross within the relevant 

consumption range, with 𝑢(𝑐) crossing from below. Figure 1 summarizes the content of Proposition 1 

through a graphical representation. 
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Notice hat condition II) of Proposition 1 allows for sufficiently low childbearing costs, given that, 

when parameters as set in such a way that 𝑐𝑚𝑖𝑛 > 0, then it follows that 𝐹𝑁 > (1 + 𝐹𝐾)𝜃. In the 

remainder of the paper we will focus on the case 𝑐𝑚𝑖𝑛 > 0, for which the conditions provided in 

Propositon 1 are satisfied, for example, with 𝛼(𝑐) = 𝛼0 + �̃� ∙ 𝑢(𝑐), 𝛼0 > 0 properly chosen and �̃� ∈

(0,1). 

Figure 1. Graphical representation of the conditions for existence and uniqueness of an interior 

solution (for 𝒄𝒎𝒊𝒏 > 𝟎 and 𝒄𝒎𝒊𝒏 < 𝟎 respectively) 

For parametric utility functions we can translate the conditions in Proposition 1 to restrictions on 

parameters. In our computations we will use normalized negative exponential utility, 𝑢 = 1 − 𝑒−𝛿𝑐, with 

𝛿 > 0. For this utility function, under Cobb-Douglas production function 𝑓 = 𝐴𝑘𝛾 and normalizing A 

such that steady state per capita GDP equals unity, the necessary and sufficient conditions for existence 

and uniqueness of interior equilibrium provided in Proposition 1 read as: 

𝑒
𝛿(1−𝛾−

𝜃

𝛽
)

<
1−�̃�

1−�̃�−𝛼0
 and 𝛿

𝛾

1−𝛽
+

𝜃

𝛽

1−�̃�−𝛼0
+

1−�̃�

1−�̃�−𝛼0
< 𝑒

𝛿(1−𝛾+
𝛾

1−𝛽
)
 

The first condition is related to 𝑐𝑚𝑖𝑛 < �̃� and if childbearing costs are high, so that 𝑐𝑚𝑖𝑛 < 0, this 

condition always holds, otherwise it constitutes a parametric restriction. The second inequality is 

related to �̃� < 𝑐𝑚𝑎𝑥. We see that with low childbearing costs (𝑐𝑚𝑖𝑛 > 0) the first inequality requires �̃� 

and 𝛼0 to be sufficiently high (to guarantee the crossing point in Figure 1). The second inequality 

requires �̃� and 𝛼0 not to be too large to avoid the 𝛼 function being too close to u for high consumption 

levels (see Figure 1). 

2.4.2. Characteristics of the equilibrium: stability and cycles 
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 In this subsection we analyse the stability of the equilibrium and characterize its dynamic 

properties, that is the shape of the transition path of per capita consumption, capital intensity and 

fertility. We can summarize our findings on the equilibrium with interior solution for fertility through 

the following Proposition: 

Proposition 2: Necessary and sufficient for stability of an interior steady state equilibrium is 

(𝑘 + 𝜃)𝑇𝑓′′𝛽𝑣′ > 2(𝛼′)2, with 𝑣′ =
 𝑢′−𝛽(1+𝑛)𝛼′

𝛽
> 0 and 𝑇 ≡ [𝑢′′ − 𝛽(1 + 𝑛)𝛼′′(𝑐)](𝑘 + 𝜃) + 2𝛽𝛼′ < 0. 

Under stability, the equilibrium displays converging cycles. 

Proof: See Appendix B.          □ 

Although the latter conditions do not provide clear restrictions on the parameters, we have used them 

as a check in the numerical simulations that we present below.  

Figure 2: Policy functions for capital, consumption and fertility 

 
Parameters: TFP (A)=1.17, capital share=0.1, 𝑢 = 1 − 𝑒−0.6𝑐, 𝛼(𝑐) = 0.01 + 0.2 ∙ 𝑢, 𝜃 = 0.6, 𝛽 = 0.68. 
𝑘∗ = 0.224, 𝑛∗ = 0.1, 𝑐∗ = 0.31, 𝑐𝑚𝑖𝑛 = 0.012.  
 

For illustrative purposes in Figure 2 we present the policy functions for k, c and n for the case 

with normalized negative exponential utility function and Cobb-Douglas production function. 

For doing this, we have computed our solution through value function iteration over a discrete 

space in k and n. This method would allow us to pick up any corner solution if it were present. Notice 
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that the policy function for capital crosses the 45°-line from above, pointing to the existence of cycles in 

the neighbourhood of the steady state (as in Jones and Schoonbroodt 2016). 

Intuitively, at a larger per capita capital stock, a new individual brings more to society on the 

resource side, and therefore requires less in utility for social welfare (from eq. (12)). Consequently, a 

larger per capita capital stock will imply lower per capita consumption, everything else equal. Therefore 

one cannot have a transition towards a steady state where both capital and consumption grow. If society 

starts off with a low level of capital and moves towards a higher steady state capital stock, consumption 

cannot continuously decline, as it would then have to be too high from the outset, preventing capital 

from growing. Therefore, both capital and consumption will cycle during a transition towards a steady 

state. This is the reason for the policy functions for consumption and capital in Figure 2 being downward 

sloping. 

2.4.3. The effects of a technological change  

In this subsection we carry out comparative statics in order to assess the effects of changes in 

total factor productivity, A, on the equilibrium values of consumption, capital and fertility. We can 

summarize our findings through the following Proposition: 

Proposition 3: A positive technological shock increases the long run optimal capital intensity and the 

population growth rate.  

Proof: Define 𝑓(𝑘) = 𝐴𝑔(𝑘), so that 𝑓′ = 𝐴𝑔′. From eq. (14) one gets 
𝑓′

𝐴
𝑑𝐴 + 𝑓′′𝑑𝑘 = 0 and: 

𝑑𝑘

𝑑𝐴
= −

𝑓′

𝐴𝑓′′ > 0           (P3.1) 

Next, by total differentiation of eqs. (15)-(16) it follows: 

𝑢′−𝛼′

𝑘+𝜃
𝑑𝑐 −

𝑢−𝛼

(𝑘+𝜃)2 𝑑𝑘 =
𝑢′′−𝛼′′𝛽(1+𝑛)

𝛽
[1 − 𝛽(1 + 𝑛)]𝑑𝑐 − [𝑢′ + 𝛼′ − 2𝛼′𝛽(1 + 𝑛)]𝑑𝑛  (P3.2) 

and, also using (14),  

𝑑𝑛 =
𝑓

𝐴(𝑘+𝜃)
𝑑𝐴 +

1−𝛽(1+𝑛)

𝛽(𝑘+𝜃)
𝑑𝑘 −

1

(𝑘+𝜃)
𝑑𝑐        (P3.3) 

Finally, exploiting eqs. (P3.1)-(P3.3) yields: 

𝑑𝑛

𝑑𝐴
= [

1−𝛽(1+𝑛)

𝛽(𝑘+𝜃)
] (

𝑇−𝛽𝛼′

𝑇
)

𝑑𝑘

𝑑𝐴
+

𝑓

𝐴

(𝑇−2𝛽𝛼′)−𝛽
(𝑢′−𝛼′)

[1−𝛽(1+𝑛)]

𝑇(𝑘+𝜃)
       (P3.4) 
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Given that under concavity 𝑇<0 (see Appendix B), then also 𝑇 − 𝛽𝛼′ < 0 and 𝑇 − 2𝛽𝛼′ < 0. Given that 

𝑢′ − 𝛼′ > 0 (from eqs. (6), (16), (19) and (P1.4)), then 
𝑑𝑛

𝑑𝐴
> 0.   □ 

In the light of the analysis carried out so far, we can interpret our findings as follows. A 

technological improvement renders capital more productive, making it convenient for the economy to 

invest higher amounts of resources in capital accumulation, in production of goods and in giving birth 

to more children. Notice that the Repugnant conclusion (i.e. upper-corner solution for population rate 

of growth) is avoided, even with low costs for raising children. Finally, notice that, at the optimal steady 

sate, it must be that 𝑢′ − 𝛼′ > 0: in words, marginal utility of consumption must be positive not only for 

society (see footnote 11) but also for each single individual, that is, an increase in consumption gives 

rise to a greater increase in utility than the increase in the critical level function13. 

We now turn to the issue of whether the Relative Repugnant Conclusion (RRC), whereby an 

increase in personal income (i.e. wage) produces a decrease of long run per capita consumption, can be 

avoided. We still focus on the effects of a positive change in total factor productivity A, given that, at the 

steady state, this change increases the marginal productivity of labour (FN) without affecting the interest 

rate (which remains constant according to eq. (14)). We can summarise our findings as follows: 

Proposition 4: A positive technological shock decreases the long run optimal per capita consumption. 

Proof: From eqs. (P3.2) and (P3.3) we obtain: 

𝑑𝑐

𝑑𝐴
= [

1−𝛽(1+𝑛)

𝑇
] 𝛼′

𝑑𝑘

𝑑𝐴
+

𝑓𝛽

𝐴

2𝛼′+
(𝑢′−𝛼′)

[1−𝛽(1+𝑛)]

𝑇
          (20) 

The sign of the first object at the RHS of eq. (20) (
1−𝛽(1+𝑛)

𝑇
) is non-positive (by (P3.1) and under stability 

𝑇 < 0; see Appendix B.3). As for the second object, given that, by restrictions stemming from eq. (6), 

𝛽(1 + �̅�) < 1 and 𝑢′ − 𝛼′ > 0, it follows that its sign is negative, so that 
𝑑𝑐

𝑑𝐴
< 0.  □ 

 

                                                 
13 For example, if the critical level function is a parameter times utility, 𝛼(𝑐) = �̃� ∙ 𝑢(𝑐), the condition above would be 

satisfied for �̃� < 1. 
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Hence, we can conclude that the adoption of a RCLU, while avoiding the assumption of too high 

childbearing costs, cannot avoid the Relative Repugnant Conclusion (that is, a decrease of consumption 

when income increases). 

In fact, this means that, when per capita income increases due to an increase in total factor 

productivity, society finds it optimal to increase population size, since the value of the labour 

endowment an individual will bring increases, and to increase capital accumulation too. However, 

resource constraint imposes to do this at the cost of lower per capita consumption, while society as a 

whole will be eventually better off (due to bigger population).  

Figure 3: Impulse functions for capital, fertility consumption after an increase of TFP 

 

Parameters: same as Fig. 1 with a change in A of +0.8%. 

In Figure 3 we provide the impulse functions for k, n and c after an increase of Total factor 

productivity (TFP), which confirms the results provided in Proposition 4. Moreover, the Figure confirms 

the presence of cyclical convergence as was shown in Proposition 2. 

2.5. Comments on the results 

We can now discuss briefly the results presented so far by comparing them with those stemming 

from previous related literature. 

First, notice that, when 𝛼(𝑐) =0 and 𝛼′(𝑐) = 0, we are in the CU case (or in the special case of 

Becker-Barro (1988) with the altruism parameter (1-α)=1, in their notation). and (12’) reads as  



 18 

𝑢 − 𝑐𝑢′ + 𝑢′[𝐹𝑁 − 𝜃(1 + 𝑟)] = 0.        (12’’) 

Under concavity of u(c) and normalization u(0)=0, then 𝑢(𝑐) − 𝑐𝑢′(𝑐) > 0, so that an interior solution 

for n can only arise if 𝐹𝑁 − 𝜃(1 + 𝑟) < 0, that is, under very high childbearing costs (the cost for rearing 

children is higher than their lifetime income in present value). This is the undesirable outcome (or 

assumption) unveiled, among others, by Michel and Pestieau (1998). Moreover, in this case it can be 

shown that the RRC emerges, that is an increase of wage reduces equilibrium per capita consumption 

(see Michel and Pestieau 1998); in our paper this can be seen by observation of (20) for 𝛼(𝑐) =0 and 

𝛼′(𝑐) = 0. As we have shown in Proposition 1, under our model the assumption of high childbearing 

costs is not necessary, provided that 𝛼(𝑐) takes on a positive value.  

With 𝛼(𝑐) > 0 and 𝛼′(𝑐) = 0 (fixed critical level), eq. (12) at the steady state reads as: 

𝑢−𝛼

𝑢′
− 𝑐 = {𝜃(1 + 𝐹𝐾) − 𝐹𝑁}           (12’’’) 

which resembles eq. (13) in Renström and Spataro (2011). In that model it is shown that the RC can be 

avoided at the steady state (even in the absence of childbearing costs) but not the RRC (see here eq. 20 

with 𝛼(𝑐) > 0 and 𝛼′(𝑐) = 0). Moreover, as in Renström and Spataro (2011), when 𝛼′(𝑐) = 0 the model 

has a corner solution for n outside the steady state. Under RCLU, we obtain interior solutions for n also 

outside the steady state, so our upper and lower limit for n are not binding; if we were to set 𝛼′(𝑐) = 0 

and ignoring any binding limits for n, the model would jump immediately to steady state k through a 

discrete jump in N. This manifests itself in our Appendix B, eq. 23, 𝛼′(𝑐) = 0). 

On the contrary, 𝛼(𝑐) > 0 and 𝛼′(𝑐) > 0 allow to avoid RC, high childbearing costs and provide 

nontrivial transitional dynamics, although do not avoid the RRC. 

A final remark is worth doing. Up to now we have not investigated the long-run level of 

population (apart from verifying that transversality conditions are satisfied). By eq. (2), we know that 

population will asymptotically grow to infinite 𝑛 > 0, will be constant if 𝑛 = 0, will shrink 

asymptotically to zero if 𝑛 < 0. All these outcomes are well compatible with the axioms that we posed 

to build the RCLU social ordering. However, there is no axiom preventing population from possible 

extinction and the latter result would, indeed, be a paradox14. That the population size asymptotically 

                                                 
14 We thank an anonymous referee for pointing us to this issue. 
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approaches zero is an artefact of the infinitely divisible population size. However we can think that there 

is a smallest unit of population size, say one person. If this is the case, N becomes smaller and smaller 

and eventually becomes close to its smallest value. At that point in time there is a discrete choice 

between its smallest value and zero. 

The Bellman equation of the problem can be written as (see  eq. (B.1) in Appendix B): 

𝑉(𝐾𝑡 , 𝑁𝑡 , 𝑐𝑡−1) = 𝑚𝑎𝑥{𝑁𝑡[𝑢(𝑐𝑡) − 𝛼(𝑐𝑡−1)] + 𝛽𝑉(𝐾𝑡+1, 𝑁𝑡+1, 𝑐𝑡)}     

Suppose that, at the steady state 𝑛 < 0, so that population is shrinking towards a certain level 𝑁, the 

latter being the level at which population is no further divisible (𝑁 can represent one individual or one 

household, etc.). Hence, at a certain point in time t the choice will be between two possible options, 

either 𝑁𝑡+1 = 0 or 𝑁𝑡+1 = 𝑁. If 𝑁𝑡+1 = 0 is chosen, then 𝑉(𝐾𝑡+1, 0, 𝑐𝑡) = 0. Hence, at period t we have: 

𝑉(𝐾𝑡, 𝑁𝑡 , 𝑐𝑡−1) = 𝑚𝑎𝑥 {
0

𝑚𝑎𝑥𝑐𝑡
𝑁[𝑢(𝑐𝑡) − 𝛼(𝑐𝑡−1)] + 𝛽𝑉(𝐾𝑡+1, 𝑁, 𝑐𝑡) 

Since along the optimal path 𝑢(𝑐𝑡) > 𝛼(𝑐𝑡−1), thus society will not choose to vanish. 

Finally, we examine the role of the critical level function 𝛼 in our model. We wish to see how the level of 

the critical level function and its slope affect steady state population growth and consumption. To 

simplify our analysis, we assume 𝛼(𝑐) = 𝛼0 + �̃� ∙ 𝑢(𝑐), with 𝛼0 > 0 and �̃� ∈ (0,1). Then, by total 

differentiation of (14), (15) and (16) w.r.t. 𝛼 we get (recall that 𝑘∗ is independent of 𝛼, and omitting 

superscript for steady state values)  

𝑑𝑛 =
𝑑𝑐

𝑘+𝜃
             (21) 

and 

𝑢′−𝛼′

𝑘+𝜃
𝑑𝑐 −

𝑑𝛼

𝑘+𝜃
=

𝑢′′−𝛼′′𝛽(1+𝑛)

𝛽
[1 − 𝛽(1 + 𝑛)]𝑑𝑐 − 𝛼′[1 − 𝛽(1 + 𝑛)]𝑑𝑛 − [𝑢′ − 𝛼′𝛽(1 + 𝑛)]𝑑𝑛 − (1 +

𝑛)[1 − 𝛽(1 + 𝑛)]𝑑𝛼′           (22) 

with 𝑑𝛼 =
𝜕𝛼

𝜕𝛼𝑖
𝑑𝛼𝑖 and 𝑑𝛼′ =

𝜕𝛼′

𝜕𝛼𝑖
𝑑𝛼𝑖 , 𝛼𝑖 = 𝛼0, �̃�. Combining the two equations above and after some 

manipulation we get: 

−[1 − 𝛽(1 + 𝑛)]
𝑇

𝛽
𝑑𝑛 = [1 − 𝛽(1 + 𝑛)](1 + 𝑛)𝑑𝛼′ −

𝑑𝛼

𝑘+𝜃
     (23) 

with 𝑇 < 0, If 𝛼𝑖 = 𝛼0, then 𝑑𝛼′ = 0, so that (23) can be written as: 

𝑑𝑛

𝑑𝛼0
= (𝑘 + 𝜃)[1 − 𝛽(1 + 𝑛)]

𝑇

𝛽
< 0         (24) 
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If 𝛼𝑖 = �̃�, then (23) becomes: 

−[1 − 𝛽(1 + 𝑛)]
𝑇

𝛽
𝑑𝑛 = {[1 − 𝛽(1 + 𝑛)](1 + 𝑛)𝑢′ −

𝑢

𝑘 + 𝜃
} 𝑑�̃� 

Rewriting 
𝑢

𝑘+𝜃
 as 

𝑢−𝛼+𝛼0

(1−�̃�)(𝑘+𝜃)
, exploiting (16) and rearranging terms, we get: 

𝑑𝑛

𝑑�̃�
= −

𝛼0

(1−�̃�)(𝑘+𝜃)
< 0          (25) 

Finally, from (21), (24) and (25) we get: 

𝑑𝑐

𝑑�̃�
> 0,

𝑑𝑐

𝑑𝛼0
> 0  

Hence, we can conclude that, every else equal, societies endowed the higher critical level 

function are more likely the shrink asymptotically, while those with lower critical level function are 

more likely to experience population growth. 

 

3. Positive perspective: decentralized economy with atomistic dynasties 

Up to now we have shown that the basic framework can avoid the emergence of RC and getting an 

interior solution without too high childbearing costs, but cannot avoid the RRC. Moreover, our analysis 

was mainly normative, although we performed some comparative statics exercises on the optimal 

steady state values for consumption, capital and fertility. Indeed, to the extent to which social 

preferences with RCLU, besides stemming from socially plausible axioms, also obtain from aggregation 

of individual preferences, then our analysis may also be interpreted as being positive in nature and the 

results as describing the behaviour of households and of the dynamics of population growth in 

response to technological shocks.  

In fact, one can recognize that preferences describing the aggregate economy can be obtained, for 

example, by aggregating over individuals who in turn have preferences as those adopted in the relative-

income literature, put forward by Duesenberry (1949) and Easterlin (1974, 1995) or in the “catching 

up with the Jones” (as in Alonso-Carrera et al. 2005) and “habit formation” literature as in de la Croix 

and Michel (1999)15. However, under the positive interpretation of the model, the negative effect on 

                                                 
15 For a review of the above mentioned literature see, among others, Macunovich (1998). In fact, if one assumes that 

individuals are entailed with both intergenerational altruism and relative-income (or relative-welfare) preferences, with 



 21 

per capita consumption and the negative effect on fertility of total productivity may appear 

unsatisfactory. 

Hence, we now extend the model to the case in which atomistic dynasties do not recognize their 

influence on critical level consumption. In particular, we assume that the critical level utility depends on 

previous period consumption, that is 𝛼 = 𝛼(𝑐�̅�−1). As a consequence, the decentralized solution, 

differently from the basic framework, will be suboptimal from a social welfare point of view (in fact, if 

the policymaker aimed at restoring optimality by correcting for the externality caused by consumption 

in the critical level, then we would get back to the model analysed in section 2). 

3.1. Model setup and results 

From now on we will adopt an explicitly positive approach and, in particular, we will tackle the 

issue of whether the RC and RRC are avoided or not under reasonable childbearing costs and we will 

also analyse the changes on fertility produced by technological shocks. Besides providing the results for 

a decentralized competitive economy, we will focus on identical dynasties. CRS apply to production 

technology also in this case. Identical dynasties take the time paths of 𝛼𝑡 , the interest rate (𝑟𝑡) and the 

wage rate (𝑤𝑡) as given. In equilibrium the refererence consumption coincides with the individual 

dynasties’ consumption.  

The dynastic welfare function now reads as: 

𝑊 = ∑ 𝑁𝑡[𝑢(𝑐𝑡) − 𝛽(1 + 𝑛𝑡)𝛼(𝑐�̅�)]∞
𝑡=0          (26) 

under the individual (dynasty) budget constraint: 

𝑘𝑡+1 + 𝜃 =
(1+𝑟𝑡)𝑘𝑡+𝑤𝑡−𝑐𝑡

1+𝑛𝑡
 .          (27) 

The economy-wide resource constraint, taken as given at individual level, is: 

�̅�𝑡+1 + 𝜃 =
�̅�𝑡+𝑓(�̅�𝑡)−𝑐�̅�

1+�̅�𝑡
 .          (28) 

                                                 
reference group being previous generation’s income (or welfare), then an individual’s preferences could be written as: 𝑈𝑡 =

(𝑢𝑡 − 𝛼𝑢𝑡−1) + 𝛽
𝑁𝑡+1

𝑁𝑡
𝑈𝑡+1 such that, aggregating over individuals, we obtain: 𝑊𝑡 = 𝑁𝑡𝑈𝑡 = 𝑁𝑡(𝑢𝑡 − 𝛼𝑢𝑡−1) + 𝛽𝑁𝑡+1𝑈𝑡+1, 

which coincides with eq. (1) in the text. 
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In equilibrium 𝑤𝑡 = 𝑓(�̅�𝑡  ) − 𝑓′(�̅�𝑡)�̅�𝑡 and 𝑟𝑡 = 𝑓′(�̅�𝑡) and 𝑘𝑡 = �̅�𝑡  , 𝑐𝑡 = 𝑐�̅�, 𝑛𝑡 = �̅�𝑡, although 

individuals will observe these relations only ex-post, after making their own private choices. 

Maximization of (26) w.r.t. 𝑘𝑡+1, 𝑐𝑡  and 𝑛𝑡 yields (see Appendix D): 

𝑢′(𝑐𝑡)

𝑢′(𝑐𝑡+1)
= 𝛽(1 + 𝑟𝑡+1)            (29) 

𝑢(𝑐𝑡)−𝛼(𝑐�̅�−1)

𝑢′(𝑐𝑡)
= 𝑐𝑡 − 𝑤𝑡 +

𝜃

𝛽
           (30) 

and eq. (28). Finally, at the steady state, the symmetric equilibrium yields  

1 = 𝛽(1 + 𝑟)             (31) 

𝑢(𝑐)−𝛼(𝑐)

𝑢′(𝑐)
= 𝑐 − 𝑤 + 𝜃(1 + 𝑟)           (32) 

1 + 𝑛 =
(1+𝑟)𝑘+𝑤−𝑐

𝑘+𝜃
            (33) 

together with market clearing prices: 𝑤 = 𝐹𝑁 and 𝑟 = 𝐹𝐾 . In Appendix D we provide conditions for 

existence, uniqueness and stability of the steady state equilibrium. In this case cycles may or may not 

arise. Moreover, childbearing costs may well be assumed to be sufficiently low (see Appendix D.2 and 

section 3.2). As for the effects of a change in the TFP, we can write the following: 

Proposition 5: A positive technological shock increases the long run capital intensity and per capita 

consumption. The effect on the population growth rate is ambiguous. Sufficient for 
𝑑𝑛

𝑑𝐴
< 0 (necessary and 

sufficient for 
𝑑𝑛

𝑑𝐴
≤ 0 if 𝜃 = 0) is (1 −

𝒄𝒎𝒊𝒏

𝒄
) 𝜎(𝑐) +

𝒄𝒎𝒊𝒏

𝒄
>

𝜶′

𝒖′
 , where 𝜎(𝑐) ≡ −

𝑢′′(𝑐)𝑐

𝑢′(𝑐)
. 

Proof: Total differentiation of (31) and (32) with respect to A, exploiting market clearing prices and CRS 

implies, respectively:  

.          (P5.1) 

𝑑𝑐

𝑑𝐴
=

−𝑓/𝐴

𝜎(𝑐)[1−
𝛼′

𝑢′𝜎(𝑐)
−

𝑤−
𝜃
𝛽

𝑐
]

          (P5.2) 

Given that under stability the denominator of (P5.2) is negative (see D.3), it follows that 
𝑑𝑐

𝑑𝐴
> 0. As for 

fertility, total differentiation of (33) provides: 

𝑑𝑛

𝑑𝐴
= [

1−𝛽(1+𝑛)

𝛽
]

𝑑𝑘

𝑑𝐴
+

𝑓

𝐴
−

𝑑𝑐

𝑑𝐴
          (P5.3) 

0
''

'


Af

f

dA

dk
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and its sign is ambiguous. However, by defining 𝑧 ≡ 1 − 𝛽(1 + 𝑛), from (27) and (28) we get 𝑢(𝑐) −

𝛼(𝑐) = 𝑢′(𝑐)(𝑐 − 𝑐𝑚𝑖𝑛) and 𝑐 = 𝑧𝑐𝑚𝑎𝑥 + (1 − 𝑧)𝑐𝑚𝑖𝑛. Total differentiation of both equations yields:  

𝑢′ (𝑐𝑚𝑖𝑛 +
𝜃

𝛽
) − [𝛼′ + 𝑢′′(𝑐 − 𝑐𝑚𝑖𝑛)] [𝑐 + (1 − 𝑧)

𝜃

𝛽
] = [𝛼′ + 𝑢′′(𝑐 − 𝑐𝑚𝑖𝑛)](𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛)

𝑑𝑧

𝑑𝑘
𝑘  

First, notice that LHS of the latter equation is increasing in 
𝜃

𝛽
. Hence, for 𝜃 ≥ 0 sufficient for 

𝑑𝑧

𝑑𝐴
=

𝑑𝑧

𝑑𝑘

𝑑𝑘

𝑑𝐴
≥

0 (i.e. 
𝑑𝑛

𝑑𝐴
≤ 0) is [𝛼′ + 𝑢′′(𝑐 − 𝑐𝑚𝑖𝑛)] < 0, that is (1 −

𝑐𝑚𝑖𝑛

𝑐
) 𝜎(𝑐) +

𝑐𝑚𝑖𝑛

𝑐
>

𝛼′

𝑢′
. □ 

 

Hence, we can conclude that under reasonable restrictions on the parameters and given sufficiently low 

childbearing costs, both RC and RRC are avoided and population growth is decreased by a positive 

technological shock. 

Intuitively, our results show that, when per capita income increases due to an increase in total 

factor productivity, individuals find it optimal to increase per capita consumption and capital 

accumulation. This happens because individuals do not take into account the (negative) externality that 

higher consumption produces in terms of higher critical level. However, resource constraint imposes to 

do this at the cost of a lower population size.  

3.2. An example 

In this subsection we provide an example for a CES utility of the form 𝑢(𝑐) =
𝑐1−𝜎

1−𝜎
 and 𝛼(𝑐) = �̃� ∙

𝑢(𝑐), with both 𝜎 and �̃� ∈ (0,1). In this case sufficient for existence of the steady state equilibrium is 

(See Appendix D for details) 

�̃� > 𝜎.            (E.1) 

The latter condition is also sufficient for uniqueness and stability of the steady state. Moreover, cycles 

may arise or not depending on the parameters. More precisely, under Cobb-Douglas production function 

𝑓 = 𝐴𝑘𝛾, from eqs. (26)-(28) steady state solutions for k, c, and n are: 

𝑘∗ = (
1−𝛽

𝛽𝐴𝛾
)

−
1

1−𝛾
           (E.2) 

𝑐∗ =
1−𝜎

�̃�−𝜎
𝑐𝑚𝑖𝑛            (E.3) 

𝛽(1 + 𝑛∗) =
𝑐𝑚𝑎𝑥−𝑐∗

𝑐𝑚𝑎𝑥−𝑐𝑚𝑖𝑛           (E.4) 
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Notice that, from eq. (E.3), a necessary condition for obtaining a steady state solution is 𝑐𝑚𝑖𝑛 > 0, that 

is 𝐹𝑁 > (1 + 𝐹𝑘) ∙ 𝜃. The common assumption of very high child costs does not even apply. We show in 

Appendix D that condition for stability of the equilibrium is:  

|
𝑑�̅�𝑡+1

𝑑�̅�𝑡
| = |

1−
𝛽𝛼′

−𝑢′′(�̅�+𝜃)

𝛽(1+𝑛)
| < 1           (E.5) 

So that we can two possible stable equilibria may arise: 

a) 1 >
𝛽𝛼′

−𝑢′′(�̅�+𝜃)
> 1 − 𝛽(1 + 𝑛) 

b) 1 <
𝛽𝛼′

−𝑢′′(�̅�+𝜃)
< 1 + 𝛽(1 + 𝑛) 

Under our assumptions on the shape of u and 𝛼 and given (E.1) the latter inequalities read as: 

a) 
𝑐𝑚𝑎𝑥−𝑐𝑚𝑖𝑛

𝑐𝑚𝑖𝑛 >
�̃�

𝜎

1−𝜎

�̃�−𝜎
 

b) 
𝜎(1−�̃�)+�̃�(1−𝜎)

2𝜎(�̃�−𝜎)
<

𝑐𝑚𝑎𝑥−𝑐𝑚𝑖𝑛

𝑐𝑚𝑖𝑛 <
�̃�

𝜎

1−𝜎

�̃�−𝜎
. 

Hence, in case a) the equilibrium in the neighbourhood of the steady state will display no cycles, while 

in case b) it will. 

Finally, using eq. (E.3) and the definition of 𝑐𝑚𝑖𝑛 provided in subsection 2.4, we have: 

𝑑𝑐∗

𝑑𝐴
=

1−𝜎

�̃�−𝜎

𝑑𝐹𝑁

𝑑𝐴
> 0            (E.6) 

and, given that 1 − 𝛽(1 + 𝑛) =
𝑐∗−𝑐𝑚𝑖𝑛

𝑐𝑚𝑎𝑥−𝑐𝑚𝑖𝑛 =
1−�̃�

�̃�−𝜎

𝛽𝐹𝑁−𝜃

𝑘+𝜃
=

1−�̃�

�̃�−𝜎

𝛽
𝐹𝑁

𝑘
−

𝜃

𝑘

1+
𝜃

𝑘

, where the ratio 
𝐹𝑁

𝑘
 is constant in the 

Cobb-Douglas case, we end up with the following derivative: 

𝑑𝑛∗

𝑑𝐴
= −

1−𝜎

�̃�−𝜎

1

𝛽

𝜃

𝑘2 [1 + 𝛽
𝑐𝑚𝑖𝑛

𝑘

(1+
𝜃

𝑘
)

2 ]
𝑑𝑘

𝑑𝐴
< 0         (E.7) 

with 
𝑑𝑛∗

𝑑𝐴
= 0 if 𝜃 = 0. 

 

4. Conclusions 

Building on the intuition provided by Michel and Pestieau (1998), we propose an extended 

version of critical level utilitarianism (CLU) which we name Relative CLU. It consists in an axiomatically 

founded and variable critical level utility obtained by conditioning the critical level used by parents or 
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society for deciding to give birth to an extra child on their own standard of living. We use the basic 

formulation for a normative analysis and an extended version for a positive analysis concerning: a) the 

Absolute Repugnant Conclusion (that is, maximum population growth rate); b) Relative Repugnant 

Conclusion (that is, consumption decreases after increases in personal income); c) too high 

childbearing costs; d) the dynamics of fertility after technological shocks. 

We show that the basic formulation can avoid both the assumption of high childbearing costs 

and the Absolute Repugnant Conclusion but cannot avoid the Relative Repugnant Conclusion. 

Moreover, optimal fertility is increased by technological shocks and displays cycles. 

If we take the view that our social welfare criterion can also be applied at individual dynastic 

level, we can aggregate the dynasties and obtain the equilibrium to the decentralized economy. Then 

our analysis could also be interpreted as descriptive (positive) in nature. However, given that under a 

positive perspective, both the persistence of the Relative Repugnant Conclusion and the positive effect 

of technology on fertility may appear unsatisfactory, we then present an extension of the model, a 

decentralized economy where each dynasty does not recognize that it affects the aggregate 

consumption level (consumption externalities). In this scenario, show that both Absolute and Relative 

Repugnant Conclusions can be avoided without resorting to unrealistically high childbearing costs. 

Moreover, a technological shock reduces long run fertility and can generate cycles along the 

transitional path. 
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Technical Appendix 

Appendix A. Axiomatization of Relative Critical Level Utilitarianism (RCLU). 

Following the approach by Koopmans (1960), we begin by assuming a general welfare function 

defined over population and utility alternatives. We then introduce one by one the postulates (axioms) 

to arrive at the final welfare representation. The approach has the advantage that the exposition is 

simpler and far more accessible, and one can clearly see how the welfare function is developed. 

For any time t we define, purely for notational convenience, the alternatives, Xt, as the utility 

vector ut={ut1,…,utN} of generation t and the size of the next generation, Nt+1, i.e. Xt ={ut, Nt+1}.16 We assume 

the population criterion is represented by a general welfare function (assumed twice differentiable). 

𝑊𝑡 = 𝑊𝑡(… , 𝑋𝑡−2, 𝑋𝑡−1, 𝑋𝑡 , 𝑋𝑡+1, … )                   (A.1) 

We begin with a number of independence and dependence postulates (axioms). It is reasonable 

to assume that the choice of utility vectors and population sizes in the sufficiently distant future is 

independent of the outcomes of the earlier generations. That is, the preferences over ut and Nt+1 for large 

s should be independent of ut-1-s and Nt-s. This is the axiom of Independence of the Long Dead as in 

Blackorby et al. (1995). To allow the possibility that population judgments depend on the utility level of 

the parental generation, we must allow for Xt+1 to depend on Xt. Denote a sequence of all future 

alternatives as 𝑋𝑡
𝑓

 ={Xt+1, Xt+2,…} and past as 𝑋𝑡
𝑝

={Xt-1, Xt-2,…}. 

Axiom 1: Independence of the Long Dead 

For all 𝑋𝑡−1
𝑝

, �̂�𝑡−1
𝑝

, 𝑋𝑡−1, 𝑋𝑡 , �̂�𝑡, 𝑋𝑡
𝑓

, �̂�𝑡
𝑓

 

𝑊𝑡(𝑋𝑡−1
𝑝

, 𝑋𝑡−1, 𝑋𝑡 , 𝑋𝑡
𝑓

) ≥ 𝑊𝑡(𝑋𝑡−1
𝑝

, 𝑋𝑡−1, �̂�𝑡, �̂�𝑡
𝑓

) 

implies 

                                                 
16 We could have defined Xt as ={ut, Nt} or not used the notation Xt at all, without changing the results. 

http://ideas.repec.org/p/dur/durham/2010_06.html
http://ideas.repec.org/p/dur/durham/2010_06.html
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𝑊𝑡(�̂�𝑡−1
𝑝

, 𝑋𝑡−1, 𝑋𝑡 , 𝑋𝑡
𝑓

) ≥ 𝑊𝑡(�̂�𝑡−1
𝑝

, 𝑋𝑡−1, �̂�𝑡 , �̂�𝑡
𝑓

).       □ 

Axiom 2: Parental Dependence17 

Preferences over Xt depend on Xt-1.         □ 

First, independence of the long dead implies that any indifference relation between ut+1 and Nt+2 

(at time t+1) must be independent of the value of Xt-1. That is the preferences over Xt+1 must be 

represented by some �̃�𝑡+1: 

�̃�𝑡+1 = �̃�𝑡+1(𝑋𝑡, 𝑋𝑡+1, 𝑋𝑡+2 … )        (A.2) 

and any preferences over current and future X must be represented by some Vt, i.e. the aggregator 

function in Koopmans (1960)18: 

𝑊𝑡 = 𝑉𝑡 (𝜙(𝑋𝑡−1, 𝑋𝑡), �̃�𝑡+1(𝑋𝑡, 𝑋𝑡+1, 𝑋𝑡+2 … )).        (A.3) 

Consequently, Independence of the Long Dead and Parental Welfare Dependence imply a weakly 

separable welfare function of the form (A.3). 

Notice that �̃�𝑡+1is potentially different from Wt, however, if the function is different, then the 

preferences over Xt+1 as of time t+1 (given a particular history of Xt), would be different from the 

preferences over Xt+1 as of time t-s, s≥1, which would generate time-inconsistency. We shall therefore 

assume time-independence (or time consistency):  

Axiom 3: Stationarity (Time Independence/Time Consistency) 

For all 𝑋𝑡−1, 𝑋𝑡 , 𝑋𝑡
𝑓

�̂�𝑡
𝑓

 

𝑊𝑡(𝑋𝑡−1, 𝑋𝑡 , 𝑋𝑡
𝑓

) ≥ 𝑊𝑡(𝑋𝑡−1, �̂�𝑡 , �̂�𝑡
𝑓

) iff    𝑊𝑡(𝑋𝑡, 𝑋𝑡
𝑓

) ≥ 𝑊𝑡(�̂�𝑡 , �̂�𝑡
𝑓

)      □ 

Notice that the first inequality gives  

𝑉 (𝜙(𝑋𝑡−1, 𝑋𝑡), �̃�𝑡+1(𝑋𝑡, 𝑋𝑡
𝑓

)) ≥ 𝑉 (𝜙(𝑋𝑡−1, 𝑋𝑡), �̃�𝑡+1(𝑋𝑡, �̂�𝑡
𝑓

)) 

By the latter inequality in the definition of stationarity it follows that �̃�𝑡+1(𝑋𝑡
𝑓

) is equal to 𝐺(𝑊𝑡+1(𝑋𝑡
𝑓

)) 

where 𝐺 is a monotone transformation. Now, with 

                                                 
17 If generations do not overlap this is Dependence of the Recently Dead. 
18 Note that we cannot in general have 𝑊𝑡 = 𝑉𝑡(𝜙(𝑋𝑡−1), �̃�𝑡+1(𝑋𝑡 , 𝑋𝑡+1, 𝑋𝑡+2 … )) as then the preferences over Xt would be 
independent of Xt-1, and thus violate Parental Welfare Dependence. However, we could allow for this formulation as a special 
case and would then obtain Critical Level Utilitarianism. 
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𝑊𝑡 = 𝑉𝑡(𝜙(𝑋𝑡−1, 𝑋𝑡), 𝐺(𝑊𝑡+1(𝑋𝑡, 𝑋𝑡
𝑓

))       (A.5) 

and the further monotone transformation 𝐺−1, we obtain, as in Koopmans (1960)  

𝑊(𝑋𝑡−1, 𝑋𝑡 , 𝑋𝑡+1 … ) = 𝑉(𝜙(𝑋𝑡−1, 𝑋𝑡), 𝑊(𝑋𝑡 , 𝑋𝑡+1, 𝑋𝑡+2 … ))     (A.6) 

that is a recursively separable social welfare function. 

This welfare function, however, implies that in general the preferences over, say, ut and Nt+1, 

depend on the values of u and N of all future generations. We limit such dependence as follows. 

Axiom 4: Independence of Distant Future Generations 

Any indifference relation between 𝑢𝑡
𝑖  and Nt+1 is constant with respect to 𝑊(𝑋𝑡

𝑓
).19  □ 

One more recursion of (A.6) gives 

𝑊(𝑋𝑡−1, 𝑋𝑡 , 𝑋𝑡+1 … ) = 𝑉 (𝜙(𝑋𝑡−1, 𝑋𝑡), 𝑉(𝜙(𝑋𝑡 , 𝑋𝑡+1), 𝑊(𝑋𝑡
𝑓

))    (A.7) 

To save on notation, denote 

𝜙𝑡 = 𝜙(𝑋𝑡−1, 𝑋𝑡)          (A.8) 

𝜙𝑡+1 = 𝜙(𝑋𝑡 , 𝑋𝑡+1)           (A.8’) 

Any indifference relation between Nt+1 and uti is given by 

𝜕𝑁𝑡+1

𝜕𝑢𝑡
𝑖 |

𝑑𝑊=0
=

𝜕𝑉(𝜙𝑡,𝑉(𝜙𝑡+1,𝑊))  

𝜕𝜙𝑡
𝜕𝜙𝑡

𝜕𝑢𝑡
𝑖 +

𝜕𝑉(𝜙𝑡,𝑉(𝜙𝑡+1,𝑊))

𝜕𝑉(𝜙𝑡+1,𝑊)
 
𝜕𝑉(𝜙𝑡+1,𝑊)

𝜕𝜙𝑡+1  
𝜕𝜙𝑡+1

𝜕𝑢𝑡
𝑖

𝜕𝑉(𝜙𝑡,𝑉(𝜙𝑡+1,𝑊))

𝜕𝜙𝑡  
𝜕𝜙𝑡

𝜕𝑁𝑡+1
+

𝜕𝑉(𝜙𝑡,𝑉(𝜙𝑡+1,𝑊))

𝜕𝑉(𝜙𝑡+1,𝑊)
 
𝜕𝑉(𝜙𝑡+1,𝑊)

𝜕𝜙𝑡+1  
𝜕𝜙𝑡+1

𝜕𝑁𝑡+1

   (A.9) 

For this indifference relation to be constant with respect to 𝑊(𝑋𝑡
𝑓

), the ratio of the partial derivatives 

must be constant: 

𝜕𝑉(𝜙𝑡,𝑉(𝜙𝑡+1,𝑊))

𝜕𝑉(𝜙𝑡+1,𝑊)
 
𝜕𝑉(𝜙𝑡+1,𝑊)

𝜕𝜙𝑡+1

𝜕𝑉(𝜙𝑡,𝑉(𝜙𝑡+1,𝑊))

𝜕𝜙𝑡

 = 𝛽        (A.10) 

Note that 𝛽 could in fact a discount factor if it is smaller than 1. Although one might argue that applying 

discounting to intergenerational allocation of resources could be ethically unappealing, we aim at 

following the lines of Blackorby et al. (1997). (A.10) implies that the function V must be linear: 

𝑊(𝑋𝑡−1, 𝑋𝑡 , 𝑋𝑡+1, … ) = 𝜙(𝑋𝑡−1, 𝑋𝑡) + 𝛽[𝜙(𝑋𝑡 , 𝑋𝑡+1) + 𝛽𝑊((𝑋𝑡+1, 𝑋𝑡+2, … )]   (A.11) 

Or by recursion 

                                                 
19 Preferences over Xt are independent of Xt+s, for all s ≥2. We note that we cannot have independence of Xt+1, without sacrificing 
dependence on Xt-1. Thus, a necessary consequence of Parental Dependence and Independence of the Long Dead, is dependence 
of at least the next (immediate) generation. 
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𝑊(𝑋𝑡−1, 𝑋𝑡 , 𝑋𝑡+1, … ) = ∑ 𝛽𝑠𝜙(∞
𝑠=0 𝑋𝑡−1+𝑠, 𝑋𝑡+𝑠)      (A.12) 

that is, a discounted sum of generational welfare functions. 

 

Having established the consequences of Independence of the Long Dead, Independence of 

Distant Future Generations, and Parental Dependence, we now turn to the specifics of the population 

choice. We now write the pairs Xt-1 ={𝑢𝑡−1, 𝑁𝑡} and Xt ={𝑢𝑡, 𝑁𝑡+1} explicitly. Recall that 𝑢𝑡 is a vector of 

individual utilities {𝑢𝑡
1,…, 𝑢𝑡

𝑁}, i.e. 𝜙𝑡 = 𝜙(𝑢𝑡−1, 𝑁𝑡 , 𝑢𝑡, 𝑁𝑡+1). Note that 𝑁𝑡+1 can be dropped at time t as 

we are only considering welfarist criteria (population only matters to the extent it brings individual 

utilities), then 

𝜙𝑡 = 𝜙(𝑢𝑡−1, 𝑁𝑡 , 𝑢𝑡)               (A.13) 

We will now define our population criterion for each generation. 

Relative Critical Level 

A society is indifferent adding individuals to an existing population, everything else equal, if the 

utility of those added equals a critical level function �̃�(𝑢𝑡−1), depending on the utility of consumption of 

someone in the previous generation. If individuals differ within a generation, this level of consumption 

must be identified. We label this as critical-level consumption, 𝑐𝑡−1
𝑟 . 

The critical level cannot depend on the population size of the previous generation (only the 

critical-consumption level), as can be seen in (A.13) (it is ruled out by Independence of the Long Dead, 

as 𝑁𝑡−1 was a decision taken by the 𝑁𝑡−2 generation). The critical level must also satisfy anonymity (to 

be introduced later), implying it must be invariant with respect to any permutation (renaming the 

indexes). 

A permissible relative critical level is the utility of a fraction, 0<δ<1, of the consumption level of 

the top rth individual of cohort t-1: 

�̃�(𝑢𝑡−1
𝑟 ) = 𝑢(𝛿𝑐𝑡−1

𝑟 )              (A.14) 

This level is invariant to adding individuals of critical level consumption, if delta is not too large. 

To see this, order consumption (by renaming individuals) as 𝑐𝑡−1
1 ≥ 𝑐𝑡−1

2 ≥ ⋯ ≥ 𝑐𝑡−1
𝑟 ≥ ⋯ ≥ 𝑐𝑡−1

𝑁𝑡−1 . 
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Adding individuals of the critical level (applied to their generation), will not change the level of 

𝑐𝑡−1
𝑟  as long as 𝑐𝑡−1

𝑟 ≥ 𝛿𝑐𝑡−2
𝑟 . Furthermore, the critical level is invariant with respect to renaming 

individuals (as the ordering of consumption is independent of the ‘names’). 

It should be noted that average consumption as critical-level consumption does not have the 

property of being independent of adding individuals of the critical level (as it would be declining). The 

same is also true for median consumption. However, if 𝑐𝑡−1
𝑖 = 𝑐𝑡−1 for all I (as under a first-best 

allocation) then the average, the median, and the top rth levels are the same. Consequently, (A.11) is: 

𝑊(𝑋𝑡−1, 𝑋𝑡) = 𝜙(𝑢𝑡−1
𝑟 , 𝑁𝑡 , 𝑢𝑡) + 𝛽𝜙(𝑢𝑡

𝑟, 𝑁𝑡+1, 𝑢𝑡+1) + 𝛽2𝑊(𝑋𝑡+1, 𝑋𝑡+2)                (A.15) 

For given population size, the social preferences over individual utilities may depend on 

population size and past utilities. We shall impose that the social preferences over utilities within a 

cohort should be independent of utilities of unconcerned individuals (but not necessarily their 

existence), that is if the utility vector {ut} is preferred to another utility vector {𝑢𝑡
′ }, this should be the 

case regardless utilities of other individuals. We require 

Axiom 5: Independence of Utilities of Unconcerned Individuals  

Preferences over {uti} and {utj} are independent of {uth} for h≠i,j, and of 𝑢𝑡−1
𝑟 .   

 □ 

We also require20: 

Axiom 6: Anonymity 

Preferences over {ut
i} are independent of identity i.        □ 

Axiom 7: Strong Pareto Principle 

Welfare is increasing in each ut
i.        □ 

Axiom 5 first requires (A.15) to be weakly separable in {ut}, i.e. 

𝑊(𝑋𝑡−1, … ) = 𝜙(Π(𝑢𝑡−1
𝑟 , 𝑁𝑡), 𝑁𝑡 , Ψ(𝑢𝑡, 𝑁𝑡)), +𝛽𝜙(Π(𝑢𝑡

𝑟 , 𝑁𝑡+1), 𝑁𝑡+1, Ψ(𝑢𝑡+1, 𝑁𝑡+1)) + 𝛽2𝑊(𝑋𝑡+1, … ) 

for some functions Π and Ψ, that is the vector ut enters as a function Ψ(ut), such that 

𝜙(𝑢𝑡−1, 𝑁𝑡 , Ψ(𝑢𝑡), 𝑁𝑡+1). Second, it requires Ψ(ut) to be an additive function. To see this, differentiate 

the welfare function with respect to uj
t and ui

t to obtain: 

                                                 
20 These are birth-date dependent statements, as in Blackorby et al. (1997). 



 34 

𝜕𝑊(𝑋𝑡−1, … )

𝜕𝑢𝑡
𝑗

𝜕𝑊(𝑋𝑡−1, … )

𝜕𝑢𝑡
𝑖

=

𝜕Ψ

𝜕𝑢𝑡
𝑗

𝜕Ψ

𝜕𝑢𝑡
𝑖

 

which can be independent of uh, h ≠ i,j, only if it is additive: Ψ = ∑ 𝜓(𝑢𝑡
𝑖 , 𝑁𝑡)

𝑁𝑡
𝑖=1 . Anonymity requires the 

function ψ to be independent of i, and must be a strictly increasing function due to the Strong Pareto 

Principle. Differentiating with respect to urt and uit gives: 

𝜕𝑊(𝑋𝑡−1, … )
𝜕𝑢𝑡

𝑟

𝜕𝑊(𝑋𝑡−1, … )

𝜕𝑢𝑡
𝑖

=

𝜕𝜙𝑡

𝜕Ψ
𝜕𝜓(𝑢𝑡

𝑟, 𝑁𝑡)
𝜕𝑢𝑡

𝑟 + 𝛽
𝜕𝜙𝑡+1

𝜕Π
𝜕Π(𝑢𝑡

𝑟, 𝑁𝑡+1)
𝜕𝑢𝑡

𝑟

𝜕𝜙𝑡

𝜕Ψ
𝜕𝜓(𝑢𝑡

𝑖 , 𝑁𝑡)

𝜕𝑢𝑡
𝑖

 

which can be independent of uh, h ≠ i,r, only if it is  is linear. Consequently 

𝑊(𝑋𝑡−1, … ) = Π(𝑢𝑡−1
𝑟 , 𝑁𝑡) + ∑ 𝜓(𝑢𝑡

𝑖 , 𝑁𝑡) + 𝛽[Π(𝑢𝑡
𝑟, 𝑁𝑡+1) + ∑ 𝜓(𝑢𝑡+1

𝑖 , 𝑁𝑡+1)
𝑁𝑡
𝑖=1 ] + 𝛽2𝑊(𝑋𝑡+1, … )

𝑁𝑡
𝑖=1           

(A.16) 

All the reasoning up until now has been for fixed populations. We now turn to the population criterion 

itself. 

A society is indifferent adding individuals to an existing population, everything else equal, if the 

utility of those added equals a critical level function �̃�(𝑢𝑡−1
𝑟 ). 

Axiom 8: Relative Critical Level Utilitarianism 

Adding m number of individuals, with utilities at the relative-critical level, �̃�(𝑢𝑡−1
𝑟 ) does not 

change the value of the social welfare function.        

 □ 

 Axiom 8 implies that 

𝑊(𝑋𝑡−1, … ) = Π(𝑢𝑡−1
𝑟 , 𝑁𝑡 + 𝑚) + ∑ 𝜓(𝑢𝑡

𝑖 , 𝑁𝑡 + 𝑚) + 𝑚𝜓(�̃�(𝑢𝑡−1
𝑟 ), 𝑁𝑡 + 𝑚) + 𝛽(Π + Ψ) +

𝑁𝑡
𝑖=1

𝛽2𝑊(𝑋𝑡+1, … ) (A.17) 

is invariant with respect to m. 

Notice that Π and Ψ in period t+1 are unaffected by the population size Nt (a consequence of our 

definition of critical-level utility). Then (A.17), by definition of critical level utility, must be constant in 

m, i.e. 
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𝑑𝑊

𝑑𝑚
=

𝜕Π(𝑢𝑡−1
𝑟 , 𝑁𝑡 + 𝑚)

𝜕𝑁𝑡
+ ∑

𝜕𝜓(𝑢𝑡
𝑖 , 𝑁𝑡 + 𝑚)

𝜕𝑁𝑡
+ 𝜓(�̃�(𝑢𝑡−1

𝑟 ), 𝑁𝑡 + 𝑚) + 𝑚
𝜕𝜓(�̃�(𝑢𝑡−1

𝑟 ), 𝑁𝑡 + 𝑚)

𝜕𝑁𝑡
= 0

𝑁𝑡

𝑖=1

 

Since �̃�(𝑢𝑡−1
𝑟 ) cannot depend on the utilities of the other individuals, the derivative of ψ w.r.t. Nt must 

be zero, consequently 

𝜓(�̃�(𝑢𝑡−1
𝑟 )) = −

𝜕Π(𝑢𝑡−1
𝑟 , 𝑁𝑡 + 𝑚)

𝜕𝑁𝑡
 

Then, Π(𝑢𝑡−1
𝑟 , 𝑁𝑡) = −𝜓(�̃�(𝑢𝑡−1

𝑟 ))𝑁𝑡, which substituted into (A.17) gives 

Proposition A.1 (Relative Critical Level Utilitarianism) 

A social welfare function (representing a social welfare ordering over population and consumption choice) 

that satisfies Independence of the Long Dead, Stationarity, Independence of Distant Future Generations, 

Independence of Utilities of Unconcerned Individuals, Anonymity, Pareto Principle and Relative Critical 

Level, must take the form: 

𝑊(𝑢𝑡−1, 𝑁𝑡 , 𝑢𝑡 , 𝑁𝑡+1 … ) = ∑ 𝛽𝑠∞
𝑠=0 ∑ [𝜓(𝑢𝑡+𝑠

𝑖 ) − 𝜓(�̃�(𝑢𝑡−1+𝑠
𝑟 ))]

𝑁𝑡+𝑠
𝑖=1                 (A.18) 

where 𝜓′(𝑢𝑡+𝑠
𝑖 ) − 𝜓′(�̃�(𝑢𝑡−1+𝑠

𝑟 ))�̃�′(𝑢𝑡−1+𝑠
𝑟 ) > 0 for any s. 

Note that if the Relative Critical Level does not depend on past utility, then α is constant, and the 

population principle reduces to Generalised Critical Level Utilitarianism as in Blackorby et al. (1995). If 

the critical level is zero, it reduces to Generalised Classical Utilitarianism. 

When considering a first best allocation within each generation, i.e. ut1 = ut2 =…=utN the function 

ψ is redundant, and we have 

𝑊(𝑢𝑡−1, 𝑁𝑡 , 𝑢𝑡 , 𝑁𝑡+1 … ) = ∑ 𝛽𝑠∞
𝑠=0 𝑁𝑡+𝑠[𝑢𝑡+𝑠 − �̂�(𝑢𝑡−1+𝑠

𝑟 )]              (A.19) 

Without loss of generality we can redefine the critical level function as �̂�(𝑢𝑡−1+𝑠) ≡ 𝛼(𝑐𝑡−1+𝑠). 

 

APPENDIX B. Characterization of the basic model 

1. The value Function in the basic framework 

The Bellman equation of the problem can be written as: 

𝑉(𝐾𝑡 , 𝑁𝑡 , 𝑐𝑡−1) = 𝑚𝑎𝑥{𝑁𝑡[𝑢(𝑐𝑡) − 𝛼(𝑐𝑡−1)] + 𝛽𝑉(𝐾𝑡+1, 𝑁𝑡+1, 𝑐𝑡)}                (B.1) 

The envelope condition with respect to 𝑐𝑡−1 gives 
𝜕𝑉

𝜕𝑐𝑡−1
= −𝛼′(𝑐𝑡−1)𝑁𝑡, which shows that the value 

function is additively separable in 𝑐𝑡−1. Hence, we can define: 
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�̃�(𝐾𝑡, 𝑁𝑡) ≡ 𝑉(𝐾𝑡 , 𝑁𝑡 , 𝑐𝑡−1) + 𝑁𝑡𝛼(𝑐𝑡−1)                     (B.2) 

so that , substituting into B.1 and exploiting 𝑁𝑡+1 = (1 + 𝑛𝑡)𝑁𝑡 we get: 

�̃�(𝐾𝑡, 𝑁𝑡) = 𝑚𝑎𝑥{𝑁𝑡[𝑢(𝑐𝑡) − 𝛽(1 + 𝑛𝑡)𝛼(𝑐𝑡)] + 𝛽�̃�(𝐾𝑡+1, 𝑁𝑡+1)}                    (B.3) 

The envelope conditions with respect to 𝑁𝑡 and 𝐾𝑡 of (B.3) and using resource constraint we get: 

𝜕𝑉�̃�

𝜕𝐾𝑡
= 𝛽

𝜕�̃�

𝜕𝐾𝑡+1
(1 + 𝐹𝐾𝑡

)                      (B.4) 

𝜕�̃�𝑡

𝜕𝑁𝑡
= [𝑢(𝑐𝑡) − 𝛽(1 + 𝑛𝑡)𝛼(𝑐𝑡)] + 𝛽

𝜕�̃�𝑡+1

𝜕𝐾𝑡+1
[𝐹𝑁𝑡

− 𝑐𝑡 − 𝜃(1 + 𝑛𝑡)] + 𝛽
𝜕�̃�𝑡+1

𝜕𝑁𝑡+1
(1 + 𝑛𝑡)               (B.5) 

so that, exploiting again resource constraint we get 

𝜕𝑉�̃�

𝜕𝐾𝑡
𝐾𝑡 +

𝜕𝑉�̃�

𝜕𝑁𝑡
𝑁𝑡 = 𝑚𝑎𝑥 {𝑁𝑡[𝑢(𝑐𝑡) − 𝛽(1 + 𝑛𝑡)𝛼(𝑐𝑡)] + 𝛽 [

𝜕�̃�𝑡+1

𝜕𝐾𝑡+1
𝐾𝑡+1 +

𝜕�̃�𝑡+1

𝜕𝑁𝑡+1
𝑁𝑡+1]}             (B.6) 

which proves that �̃� is homogenous of degree one. Hence, we can define 

𝑣(𝑘) =
�̃�(𝐾,𝑁)

𝑁
= �̃�(𝑘, 1)                     (B.7) 

so that (B.3) can we written as: 

𝑣(𝑘𝑡) = 𝑚𝑎𝑥{[𝑢(𝑐𝑡) − 𝛽(1 + 𝑛𝑡)𝛼(𝑐𝑡)] + 𝛽(1 + 𝑛𝑡)𝑣(𝑘𝑡+1)}                 (B.8) 

under the constraint  

(1 + 𝑛𝑡)𝑘𝑡+1 = 𝑓𝑡 + 𝑘𝑡 − 𝑐𝑡 − 𝜃(1 + 𝑛𝑡)                   (B.9) 

2. Dynamics of the system, concavity and stability of the steady state 

FOCs w.r.t. 𝑐𝑡 and 𝑛𝑡 give 

𝐻𝑐 ≡ 𝑢′(𝑐𝑡) − 𝛽(1 + 𝑛𝑡)𝛼′(𝑐𝑡) − 𝛽𝑣′(𝑘𝑡+1) = 0                 (B.10) 

𝐻𝑛 ≡ −𝛽𝛼(𝑐𝑡) + 𝛽𝑣(𝑘𝑡+1) − 𝛽𝑣′(𝑘𝑡+1)(𝑘𝑡+1 + 𝜃) = 0                (B.11) 

and SOCs 

𝐻𝑐𝑐 = 𝑢′′(𝑐𝑡) −  𝛽(1 + 𝑛𝑡)𝛼′′(𝑐𝑡) +
𝛽

(1+𝑛𝑡)
𝑣′′(𝑘𝑡+1)                  (B.12) 

𝐻𝑐𝑛 = −𝛽𝛼′(𝑐𝑡) + 𝛽
𝑘𝑡+1+𝜃

1+𝑛𝑡
𝑣′′(𝑘𝑡+1)                  (B.13) 

𝐻𝑛𝑛 = 𝛽
(𝑘𝑡+1+𝜃)2

1+𝑛𝑡
𝑣′′(𝑘𝑡+1)                   (B.14) 

with H the Hessian matrix in c and n and  

|𝐻| = 𝛽𝑣′′(𝑘𝑡+1)
𝑘𝑡+1+𝜃

1+𝑛𝑡
{[(𝑢′′(𝑐𝑡) − 𝛽(1 + 𝑛𝑡)𝛼′′(𝑐𝑡)](𝑘𝑡+1 + 𝜃) + 2𝛽𝛼′(𝑐𝑡)} − [𝛽𝑎′(𝑐𝑡)]2            (B.15) 
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the determinant of the Hessian matrix (which needs to be positive for concavity). By total 

differentiation of (B.10) and (B.11) it descends that: 

𝐻𝑐𝑐
𝑑𝑐𝑡

𝑑𝑘𝑡
+ 𝐻𝑐𝑛

𝑑𝑛𝑡

𝑑𝑘𝑡
− 𝛽𝑣′′(𝑘𝑡+1)

𝜕𝑘𝑡+1

𝜕𝑘𝑡
= 0                  (B.16) 

𝐻𝑐𝑛
𝑑𝑐𝑡

𝑑𝑘𝑡
+ 𝐻𝑛𝑛

𝑑𝑛𝑡

𝑑𝑘𝑡
− 𝛽(𝑘𝑡+1 + 𝜃)𝑣′′(𝑘𝑡+1)

𝜕𝑘𝑡+1

𝜕𝑘𝑡
= 0                 (B.17) 

By recognizing that, from resource constraint 
𝜕𝑘𝑡+1

𝜕𝑘𝑡
=

1+𝑓𝑡
′

1+𝑛𝑡
 and using Cramer’s rule we obtain: 

𝑑𝑐𝑡

𝑑𝑘𝑡
= 𝛽(1 + 𝑓′𝑡)

𝑣′′(𝑘𝑡)

1+𝑛𝑡

𝐻𝑛𝑛−(𝑘𝑡+1+𝜃)𝐻𝑐𝑛

|𝐻|
= 𝛽(1 + 𝑓′𝑡)𝛼′(𝑐𝑡)

𝑣′′(𝑘𝑡)

1+𝑛𝑡

𝛽(𝑘𝑡+1+𝜃)

|𝐻|
              (B.18) 

𝑑𝑛𝑡

𝑑𝑘𝑡
= 𝛽(1 + 𝑓′𝑡)

𝑣′′(𝑘𝑡)

1+𝑛𝑡

𝐻𝑐𝑐(𝑘𝑡+1+𝜃)−𝐻𝑐𝑛

|𝐻|
= 𝛽(1 + 𝑓′𝑡)

𝑣′′(𝑘𝑡)

1+𝑛𝑡

[(𝑢′′(𝑐𝑡)−𝛽(1+𝑛𝑡)𝛼′′(𝑐𝑡)](𝑘𝑡+1+𝜃)+𝛽𝛼′(𝑐𝑡)

|𝐻|
 

           (B.19) 

Finally, by totally differentiating the resource constraint one gets 

𝑑𝑘𝑡+1

𝑑𝑘𝑡
=

1+𝑓′𝑡

1+𝑛𝑡
−

1

1+𝑛𝑡

𝑑𝑐𝑡

𝑑𝑘𝑡
−

𝑘𝑡+1+𝜃

1+𝑛𝑡

𝑑𝑛𝑡

𝑑𝑘𝑡
                   (B.20) 

and exploiting (B.18) and (B.19), (B.20) becomes 

𝑑𝑘𝑡+1

𝑑𝑘𝑡
= − 

(1+𝑓′
𝑡)

1+𝑛𝑡

(𝛽𝛼′(𝑐𝑡))2

|𝐻|
                     (B.21) 

The envelope condition with respect to 𝑘𝑡 is: 

𝑣′(𝑘𝑡) = 𝛽𝑣′(𝑘𝑡+1)(1 + 𝑓𝑡
′)                    (B.22) 

Eqs. (B.18), (B.19) and (B.21) fully characterize the dynamics of the system. The steady state 

conditions follow from the FOCs. 

3. Stability 

In order to have stability of the steady state equilibrium, by recognizing that (1 + 𝑓′)𝛽 = 1, it must be: 

|
𝑑𝑘𝑡+1

𝑑𝑘𝑡
| =

(𝛼′)2

1+𝑛

𝛽

|𝐻|
< 1                     (B.23) 

(B.15) in steady state can be written as: 

|𝐻| + (𝛽𝑎′)2 = 𝛽𝑣′′ 𝑘+𝜃

1+𝑛
𝑇                   (B.24) 

where  

𝑇 ≡ [𝑢′′ − 𝛽(1 + 𝑛)𝛼′′(𝑐)](𝑘 + 𝜃) + 2𝛽𝛼′.                  (B.25) 

Moreover, by differentiating (B.22) we get that at the steady state  
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𝑣′′ (1 −
𝑑𝑘𝑡+1

𝑑𝑘𝑡
) = 𝑓′′𝛽𝑣′                     (B.26) 

Using (B.21) as well as the steady state condition (1 + 𝑓′)𝛽 = 1 in (B.26) and combining with (B.24) 

gives a quadratic equation in |𝐻|: 

[|𝐻| + (𝛽𝛼′)2] [|𝐻| +
1

𝛽(1+𝑛)
(𝛽𝛼′)2] = |𝐻|𝑓′′𝛽2𝑣′

𝑘+𝜃

1+𝑛
𝑇                (B.27) 

Let us define 𝑥 ≡  𝛽
(𝛼′)2

1+𝑛
, 𝑠 ≡ 𝑓′′𝛽2𝑣′

𝑘+𝜃

1+𝑛
𝑇, ∆≡ |𝐻| −

𝛽

(1+𝑛)
(𝛼′)2, 𝑦 ≡  1 + 𝛽(1 + 𝑛), so that eq. (B.27) 

can be written as the quadratic form in ∆: 

∆2 + (2𝑥 + 𝑥𝑦 − 𝑠)∆ + 2𝑥2𝑦 − 𝑥𝑠 = 0                 (B.28) 

the roots are 

∆1,2=
𝑠 − 𝑥(2 + 𝑦)

2
±

√[𝑠 − 𝑥(2 + 𝑦)]2 + 4𝑥[𝑠 − 𝑥(2 + 𝑦)] + 4𝑥2𝑦

2
 

Recall that, for stability to hold 

∆≡ |𝐻| −
𝛽

(1+𝑛)
(𝛼′)2 > 0                     (B.29) 

In order to get a positive root, it must be that 4𝑥[𝑠 − 𝑥(2 + 𝑦)] + 4𝑥2𝑦 > 0,21 which is true iff 𝑠 > 2𝑥, 

i.e. iff  

(𝑘 + 𝜃)𝑇𝑓′′𝛽𝑣′ > 2(𝛼′)2                    (B.30) 

with 𝑣′ =
 𝑢′−𝛽(1+𝑛)𝛼′

𝛽
. 

Notice that, by eq. (B.29), ∆> 0 implies |𝐻|>0. To conclude: 

1) stability of the equilibrium implies |𝐻|>0 (by B.29), which provides concavity of the objective 

function w.r.t. to c and n; 

2) 𝑇 < 0 (from B.27, since 𝑓′′ < 0) and, by eq. (B.15), 𝑣′′ < 0, that is, concavity of the value function 

w.r.t. k is guaranteed; 

3) From eq. (B.21) the system displays cycles in k in the neighbourhood of the steady state; 

4) From eq. (B.19), fertility has the same qualitative dynamics as capital (i.e. they move in the same 

direction in each period); 

5) From eq. (B.18), consumption moves in the opposite direction of k. 

                                                 
21 Of course, a stricter condition is 𝑠 > 2𝑥 + 𝑥𝑦 (sufficient), but we look for the weakest condition. 
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Appendix C: Proof of Proposition 1 

The first derivatives of both sides of (19) w.r.t. c are: 

𝜕𝐿𝐻𝑆

𝜕𝑐
= 1 −

𝑢−𝛼

𝑢′−𝛼′

𝑢′′−𝛼′′

𝑢′−𝛼′                    (P1.1) 

𝜕𝑅𝐻𝑆

𝜕𝑐
= 1 + 2

𝛼′

𝑢′−𝛼′

(𝑐−𝑐𝑚𝑖𝑛)

(𝑐𝑚𝑎𝑥−𝑐𝑚𝑖𝑛)
+ (

𝛼′′

𝑢′−𝛼′ −
𝛼′

𝑢′−𝛼′

𝑢′′−𝛼′′

𝑢′−𝛼′ )
(𝑐−𝑐𝑚𝑖𝑛)

2

(𝑐𝑚𝑎𝑥−𝑐𝑚𝑖𝑛)
              (P1.2) 

In Appendix B we show that, necessary for concavity of the objective function is 

𝑇 ≡ 𝛽[2𝛼′ + 𝑢′′(𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛) − 𝛼′′(𝑐𝑚𝑎𝑥 − 𝑐)] < 0 .               (P1.3) 

Combining (P1.1)-(P1.3) it follows that concavity holds iff 
𝜕𝐿𝐻𝑆

𝜕𝑐
>

𝜕𝑅𝐻𝑆

𝜕𝑐
 at the steady state. Let us also 

notice that 𝑅𝐻𝑆(𝑐𝑚𝑖𝑛) = 0, 𝑅𝐻𝑆(𝑐𝑚𝑎𝑥) > 0, and 
𝜕𝐿𝐻𝑆

𝜕𝑐
> 0. Finally, the roots to (19) are: 

𝑐 − 𝑐𝑚𝑖𝑛 = −
1−𝛼

2𝛼
(𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛) ± √[

1−𝛼

2𝛼
(𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛)]

2
+

𝑢−𝛼

𝑢′−𝛼′
                (P1.4) 

and only one is positive (because 𝐿𝐻𝑆 =
𝑢−𝛼

𝑢′−𝛼′ > 0 at the crossing point). Hence, the system has either 

zero or one equilibrium. In either cases we can conclude that necessary for a crossing point is 

𝐿𝐻𝑆(𝑐𝑚𝑎𝑥) > 𝑅𝐻𝑆(𝑐𝑚𝑎𝑥) (that is, LHS and RHS cross at some 𝑐∗ ∈ (𝑐𝑚𝑖𝑛, 𝑐𝑚𝑎𝑥)), which reads as: 

𝑢(𝑐𝑚𝑎𝑥) − 𝑢′(𝑐𝑚𝑎𝑥)(𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛) >  𝛼′(𝑐𝑚𝑎𝑥)                (P1.5) 

Sufficient for one crossing point is then either 𝐿𝐻𝑆(𝑐𝑚𝑖𝑛) < 𝑅𝐻𝑆(𝑐𝑚𝑖𝑛) (if 𝑐𝑚𝑖𝑛 > 0) or 𝐿𝐻𝑆(0) <

𝑅𝐻𝑆(0) (if 𝑐𝑚𝑖𝑛 < 0), giving the conditions 𝑢(𝑐𝑚𝑖𝑛) <  𝛼(𝑐𝑚𝑖𝑛) and 
𝑢(0)−𝛼(0)

𝑢′(0)−𝛼′(0)
≤ 0, respectively. □ 

 

Appendix D. Decentralized model with atomistic dynasties 

1. The Value function 

Each dynasty chooses 𝐶𝑡 , 𝑁𝑡 and 𝐾𝑡+1, taking as given the time paths of 𝛼𝑡 , the interest rate (𝑟𝑡) 

and the wage rate (𝑤𝑡). Those latter quantities are functions of the economy-wide capital stock. 

Consequently the transition equation for the economy-wide capital stock is needed when formulating 

the Bellman equation (in order to ‘compute’ 𝛼𝑡 , 𝑟𝑡 and 𝑤𝑡). The value function, therefore, depends on 

own 𝐾𝑡 , 𝑁𝑡 and economy-wide �̅�𝑡 , �̅�𝑡 . By following the same lines as in Appendix B (invoking the 

envelope conditions w.r.t. 𝐾𝑡 , 𝑁𝑡, �̅�𝑡 , �̅�𝑡) we can write the Bellman equation in per capita terms as: 
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𝑣(𝑘𝑡; �̅�𝑡 ) = 𝑚𝑎𝑥{[𝑢(𝑐𝑡) − 𝛽(1 + 𝑛𝑡)𝛼(𝑐�̅�)] + 𝛽(1 + 𝑛𝑡)𝑣(𝑘𝑡+1; �̅�𝑡+1)}               (D.1) 

subject to: 𝑘𝑡+1 + 𝜃 =
(1+𝑟𝑡)𝑘𝑡+𝑤𝑡−𝑐𝑡

1+𝑛𝑡
                     (D.2) 

taking as given: �̅�𝑡+1 + 𝜃 =
�̅�𝑡+𝑓(�̅�𝑡)−𝑐�̅�

1+�̅�𝑡
 .                   (D.3) 

and 𝑤𝑡 = 𝑓(�̅�𝑡  ) − 𝑓′(�̅�𝑡)�̅�𝑡  and 𝑟𝑡 = 𝑓′(�̅�𝑡). FOCs w.r.t. 𝑐 and 𝑛 and envelope condition w.r.t. k yield: 

𝑣′(𝑘𝑡) = 𝛽𝑣′(𝑘𝑡+1)(1 + 𝑟𝑡)                      (D.4) 

𝑢′(𝑐𝑡) − 𝛽𝑣′(𝑘𝑡+1) = 0                      (D.5) 

−𝛽𝛼(𝑐�̅�) + 𝛽𝑣(𝑘𝑡+1) − 𝛽𝑣′(𝑘𝑡+1)(𝑘𝑡+1 + 𝜃) = 0                   (D.6) 

where the latter condition holds under interiority of solution for n. Differentiation of (D.6) w.r.t. 𝑘𝑡+1 

gives: 

−𝛽𝑣′′(𝑘𝑡+1)(𝑘𝑡+1 + 𝜃)𝑑𝑘𝑡+1 =0                     (D.7) 

which implies that 𝑣′′(𝑘𝑡+1) = 0, that is, the value function is linear in 𝑘𝑡+1, so that it can be written as  

𝑣(𝑘) = Φ(�̅�) + 𝑘 ∙ Ψ(�̅�)                      (D.8) 

for some function Φ, Ψ, so that, eqs. (D.4)-(D.6) can be written as: 

Ψ(�̅�𝑡) = 𝛽(1 + 𝑟𝑡)Ψ(�̅�𝑡+1)                      (D.9) 

𝑢′(𝑐𝑡) − 𝛽Ψ(�̅�𝑡+1) = 0                    (D.10) 

𝛼(𝑐�̅�) = Φ(�̅�𝑡+1) − 𝜃Ψ(�̅�𝑡+1).                   (D.11) 

Bellman equation (D.1) now reads as: 

𝑣(𝑘𝑡; �̅�𝑡 ) = 𝑚𝑎𝑥{𝑢(𝑐𝑡) + 𝛽(1 + 𝑛𝑡)(𝑘𝑡+1 + 𝜃)Ψ(�̅�𝑡+1)}                (D.12) 

and, exploiting (D.8), (D.9) and (D.2): 

 Φ(�̅�𝑡) = {𝑢(𝑐𝑡) +
𝑤𝑡−𝑐𝑡

1+𝑟𝑡
Ψ(�̅�𝑡)}                   (D.13) 

Note that differentiating (D.13) w.r.t. 𝑐𝑡 reproduces (D.10), so that, when taking derivatives w.r.t. �̅�𝑡 

the effect on 𝑐𝑡 can be ignored. 

Differentiating (D.13) w.r.t. �̅�𝑡, noting that 𝑤𝑡 = 𝑓(�̅�𝑡  ) − 𝑓′(�̅�𝑡)�̅�𝑡  and 𝑟𝑡 = 𝑓′(�̅�𝑡) yields 

Φ′(�̅�𝑡) = [−
𝑓′′(�̅�𝑡)�̅�𝑡

1+𝑟𝑡
− 𝑓′′(�̅�𝑡)

𝑤𝑡−𝑐𝑡

(1+𝑟𝑡)2] Ψ(�̅�𝑡) +
𝑤𝑡−𝑐𝑡

1+𝑟𝑡
Ψ(�̅�𝑡)                (D.14) 

so that, exploiting (D.2) and (D.3) (need be positive) 
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Φ′(�̅�𝑡) − 𝜃Ψ′(�̅�𝑡)=− 
𝑓′′(�̅�𝑡)

(1+𝑟𝑡)2
(1 + �̅�𝑡)(�̅�𝑡+1 + 𝜃)Ψ(�̅�𝑡) + [

(1+�̅�𝑡)(�̅�𝑡+1+𝜃)

(1+𝑟𝑡)
− (𝑘𝑡 + 𝜃)] Ψ′(�̅�𝑡).           (D.15) 

At the steady state we get  

Φ′(�̅�) − 𝜃Ψ′(�̅�)=− (�̅� + 𝜃){𝛽2𝑓′′(�̅�)(1 + �̅�)Ψ(�̅�) + [1 − 𝛽(1 + �̅�)]Ψ′(𝑘)}.              (D.16) 

This equation will be used later. Next, differentiation of (D.9) w.r.t. �̅�𝑡 and equilibrium prices provide: 

Ψ′(�̅�𝑡) = 𝛽𝑓′′(�̅�𝑡)Ψ(�̅�𝑡+1) + 𝛽[1 + 𝑓′(�̅�𝑡)]Ψ′(�̅�𝑡)
𝑑�̅�𝑡+1

𝑑�̅�𝑡
 .               (D.17) 

In steady state (D.17) reads: 

𝑑�̅�𝑡+1

𝑑�̅�𝑡
= 1 − 𝛽𝑓′′(�̅�)

Ψ(�̅�)

Ψ′(�̅�)
.                   (D.18) 

Next, substituting for (D.9) into (D.10) and differentiating w.r.t. �̅�𝑡 we get: 

𝑢′′(𝑐𝑡)
𝑑𝑐𝑡

𝑑�̅�𝑡
= −

𝑓′′(�̅�𝑡)

(1+𝑟𝑡)2 Ψ(�̅�𝑡) +
Ψ′(�̅�𝑡)

(1+𝑟𝑡)
                   (D.19) 

Differentiating (D.11) 

𝛼′(𝑐�̅�)
𝑑𝑐𝑡

𝑑�̅�𝑡
= [Φ′(�̅�𝑡+1) − 𝜃Ψ′(�̅�𝑡+1)]

𝑑�̅�𝑡+1

𝑑�̅�𝑡
                   (D.20) 

Noticing that in equilibrium 𝑐𝑡 = 𝑐�̅�, then combining (D.19) and (D.20) gives: 

𝛼′(𝑐�̅�)

𝑢′′(𝑐�̅�)
[−

𝑓′′(�̅�𝑡)

(1+𝑟𝑡)2 Ψ(�̅�𝑡) +
Ψ′(�̅�𝑡)

(1+𝑟𝑡)
] = [Φ′(�̅�𝑡) − 𝜃Ψ′(�̅�𝑡)]

𝑑�̅�𝑡+1

𝑑�̅�𝑡
               (D.21) 

and (D.21) in steady state becomes: 

𝛽
𝛼′(𝑐�̅�)

𝑢′′(𝑐�̅�)
Ψ′(�̅�) [1 − 𝛽𝑓′′ Ψ(�̅�)

Ψ′(�̅�)
] = [Φ′(�̅�) − 𝜃Ψ′(�̅�)]

𝑑�̅�𝑡+1

𝑑�̅�𝑡
                (D.22) 

which, using (D.18) gives 

𝛽
𝛼′(𝑐�̅�)

𝑢′′(𝑐�̅�)
Ψ′(�̅�) = [Φ′(�̅�) − 𝜃Ψ′(�̅�)].                   (D.23) 

Exploiting (D.23) and (D.16) we get that  

1−
𝛽𝛼′(�̅�)

−𝑢′′(�̅�)(�̅�+𝜃)

𝛽(1+𝑛)
= [1 − 𝛽𝑓′′ Ψ(�̅�)

Ψ′(�̅�)
] =

𝑑�̅�𝑡+1

𝑑�̅�𝑡
                   (D.24) 

where the last equality comes from (D.18). 

2. Existence of the steady state equilibrium 

From eqs. (D.10), (D.11) and (D.13), computed at the steady state, we get: 

𝑢(𝑐)−𝛼(𝑐)

𝑢′(𝑐)
= 𝑐 − 𝑤 +

𝜃

𝛽
                     (D.25) 

The latter equation can be written as: 
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𝑢(𝑐) − 𝑐𝑢′(𝑐) = 𝛼(𝑐) − (𝑤 −
𝜃

𝛽
) 𝑢′(𝑐)                  (D.26) 

Notice that, under concavity of 𝑢(𝑐) and normalization 𝑢(0) = 0, the LHS of (D.26) has a positive sign, 

so that, if the solution is interior, also the RHS. In previous works on endogenous population, given that 

𝛼(𝑐) = 0, interior solution needed the assumption of very high costs for childbearing, that is 𝑤 −
𝜃

𝛽
< 0. 

Let us assume that 𝑤 ≥
𝜃

𝛽
 (that is, 𝐹𝑁 ≥ 𝜃(1 + 𝑟)). Eq. (D.26) can be written as: 

𝜂(𝑐) [1 −
𝛼(𝑐)

𝑢(𝑐)
] − 1 = − (𝑤 −

𝜃

𝛽
)

𝑢′(𝑐)

𝑐
                   (D.27) 

with 𝜂(𝑐) ≡
𝑢(𝑐)

𝑐𝑢′(𝑐)
> 1 under concavity of 𝑢(𝑐). Given that the RHS of (D.27) is negative under our 

assumptions, existence of the equilibrium implies the restriction  

[1 −
𝛼(𝑐)

𝑢(𝑐)
] <

1

𝜂(𝑐)
                     (D.28) 

For example, under CES utility and 𝛼(𝑐) = �̃�𝑢(𝑐) the latter condition reads �̃� ≥ 𝜎. 

3. Uniqueness and stability of the steady state equilibrium 

As for uniqueness and stability of the steady state equilibrium, let us assume lim
𝑐→0

𝑐𝑢′(𝑐) = 0,  

𝛼′(𝑐) > 0 𝑎𝑛𝑑 𝛼(0) = 0. 

Thus, as for (D.26), we have LHS(c=0)=0, and RHS(c=0) <0 (possibly −∞). Differentiating (D.26) 

yields: 

𝜕𝐿𝐻𝑆

𝜕𝑐
= −𝑐𝑢′′(𝑐) > 0                     (D.29) 

𝜕𝑅𝐻𝑆

𝜕𝑐
= 𝛼′(𝑐) − (𝑤 −

𝜃

𝛽
) 𝑢′′(𝑐) > 0                   (D.30) 

Necessary for existence and uniqueness of an interior solution is that 
𝜕𝐿𝐻𝑆

𝜕𝑐
𝜕𝑅𝐻𝑆

𝜕𝑐

< 1, that is 

𝛼′(𝑐)

𝑢′(𝑐)

1

𝜎(𝑐)
+

𝑤−
𝜃

𝛽

𝑐
> 1                    (D.31) 

where 𝜎(𝑐) ≡ −𝑢′′(𝑐)𝑐/𝑢′(𝑐). Sufficient for inequality (D.31) to hold is that 

 
𝛼′

𝑢′

1

𝜎
≥ 1                      (D.32) 

For example, under CES utility and 𝛼(𝑐) = �̃�𝑢(𝑐), (D.32) reads again �̃� ≥ 𝜎. Moreover, exploiting 

steady state expression of (D.3), 𝑤 = 𝑓(�̅� ) − 𝑓′(�̅� )�̅�  and (1 + 𝑓′)𝛽 = 1, (D.31) reads as 
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1 − 𝛽(1 + 𝑛) <
𝛽𝛼′(𝑐̅)

−𝑢′′(𝑐)̅(�̅�+𝜃)
                    (D.33) 

which is also the condition for stability of the equilibrium. Hence, if an interior equilibrium exists, it is 

also stable. 


