92 research outputs found

    Risk factors for polyoma virus nephropathy

    Get PDF
    Background. Polyoma virus-associated nephropathy (PVN) is a common cause of renal transplant failure. The risk factors for the development of PVN have not yet been studied in large cohorts of patients for periods of 20 years. Methods. We collected clinical, renal biopsy and urinary cytology data from all patients with renal transplantations performed at the University Hospital of Basel from 1985 to 2005. All patients with a renal biopsy and urine cytology were included (n = 880). Renal transplants were divided into three groups, according to evidence of polyoma virus (PV) infection (decoy cells in the urine) and biopsy-proven PVN: Renal transplants without evidence of a PV infection (n = 751). Renal transplants with PV reactivation, e.g. decoy cell (DC) found by urinary cytology, but without PVN (n = 90). Renal transplants with PVN (n = 39). Results. The prevalence of biopsy-proven PVN in this cohort of patients was 3.3%. Immunosuppression with mycophenolate and/or tacrolimus, ATGAM, male gender of the recipient and a higher number of transplant rejection episodes were factors significantly associated with PVN development. Conclusions. The most important risk factors for the development of PVN are acute rejection and ATGAM used as induction therapy as well as tacrolimus and mycophenolate as maintenance therapy. Therefore, we conclude that patients with tacrolimus and mycophenolate maintenance therapy should be carefully monitored for the development of PV

    Anatomic site-specific patterns of gene copy number gains in skin, mucosal, and uveal melanomas detected by fluorescence in situ hybridization

    Get PDF
    To assess the differences between melanomas of different location and different etiology, 372 malignant melanomas were brought in a tissue microarray format. The collection included 23 acral and 118 non-acral skin melanomas, 9 mucosal melanomas, 100 uveal melanomas, and 122 melanoma metastases. Fluorescence in situ hybridization (FISH) was used to assess copy number changes of the cyclin D1 (CCND1), MDM2, c-myc (MYC), and HER2 genes. FISH analysis revealed distinct differences between melanomas from different locations. CCND1 amplifications were detected in skin melanomas from sites with chronic sun exposure (6 of 32 cases), acral melanomas (4 of 17 cases), and mucosal melanomas (one of ten cases) but not in uveal melanomas. High-level MDM2 amplifications were exclusively present in acral melanomas (2 of 19 cases). MYC copy number gains were detected in 32 of 71 uveal melanomas, five of eight mucosal melanomas, and 6 of 67 melanomas from sites with intermittent sun exposure but not in acral melanomas nor melanomas from sites with chronic sun exposure. Alterations of the MYC gene were associated with advanced tumor stage. There were no high-level HER2 amplifications. Site-specific genetic and epigenetic features may impact the response of melanomas to various anti-cancer drugs and should be considered in future studies on the molecular pathogenesis of malignant melanoma

    PD-1+ natural killer cells in human non-small cell lung cancer can be activated by PD-1/PD-L1 blockade

    Get PDF
    Natural killer (NK) cells are critically involved in anti-tumor immunity by targeting tumor cells. In this study, we show that intratumoral NK cells from NSCLC patients expressed elevated levels of the immune checkpoint receptor PD-1 on their cell surface. In contrast to the expression of activating receptors, PD-1; +; NK cells co-expressed more inhibitory receptors compared to PD-1; -; NK cells. Intratumoral NK cells were less functional compared to peripheral NK cells, and this dysfunction correlated with PD-1 expression. Tumor cells expressing PD-L1 inhibited the functionality of PD-1; +; NK cells in ex vivo models and induced PD-1 clustering at the immunological synapse between NK cells and tumor cells. Notably, treatment with PD-1 blockade was able to reverse PD-L1-mediated inhibition of PD-1; +; NK cells. Our findings highlight the therapeutic potential of PD-1; +; NK cells in immune checkpoint blockade and could guide the development of NK cell-stimulating agents in combination with PD-1 blockade

    Basal-Like Cell-Conditioned Medium Exerts Anti-Fibrotic Effects In Vitro and In Vivo.

    Get PDF
    In idiopathic pulmonary fibrosis (IPF), basal-like cells are atypically present in the alveolar region, where they may affect adjacent stromal cells by paracrine mechanisms. We here aimed to confirm the presence of basal-like cells in peripheral IPF lung tissue in vivo, to culture and characterize the cells in vitro, and to investigate their paracrine effects on IPF fibroblasts in vitro and in bleomycin-injured rats in vivo. Basal-like cells are mainly localized in areas of pathological bronchiolization or honeycomb cysts in peripheral IPF lung tissue. Single-cell RNA sequencing (scRNA-seq) demonstrated an overall homogeneity, the expression of the basal cell markers cytokeratin KRT5 and KRT17, and close transcriptomic similarities to basal cells in the majority of cells cultured in vitro. Basal-like cells secreted significant levels of prostaglandin E2 (PGE2), and their conditioned medium (CM) inhibited alpha-smooth muscle actin (α-SMA) and collagen 1A1 (Col1A1) and upregulated matrix metalloproteinase-1 (MMP-1) and hepatocyte growth factor (HGF) by IPF fibroblasts in vitro. The instillation of CM in bleomycin-injured rat lungs resulted in reduced collagen content, improved lung architecture, and reduced α-SMA-positive cells. Our data suggested that basal-like cells may limit aberrant fibroblast activation and differentiation in IPF through paracrine mechanisms

    Fibroblast growth factor receptor (FGFR) inhibitor rogaratinib in patients with advanced pretreated squamous-cell non-small cell lung cancer over-expressing FGFR mRNA: The SAKK 19/18 phase II study.

    Get PDF
    BACKGROUND Patients with advanced squamous-cell lung cancer (SQCLC) frequently (46%) exhibit tumor overexpression of fibroblast growth factor receptor (FGFR) messenger ribonucleic acid (mRNA). Rogaratinib is a novel oral pan-FGFR inhibitor with a good safety profile and anti-tumor activity in early clinical trials as a single agent in FGFR pathway-addicted tumors. SAKK 19/18 determined clinical activity of rogaratinib in patients with advanced SQCLC overexpressing FGFR1-3 mRNA. METHODS Patients with advanced SQCLC failing standard systemic treatment and with FGFR1-3 mRNA tumor overexpression as defined in the protocol received rogaratinib 600 mg BID until disease progression or intolerable toxicity. A 6-months progression-free survival rate (6mPFS) ≤15 % was considered uninteresting (H0), whereas a 6mPFS ≥38 % was considered promising (H1). According to a Simon 2-stage design, 2 out of 10 patients of the first stage were required to be progression-free at 6 months. Comprehensive Genomic Profiling was performedusing the Oncomine Comprehensive Assay Plus (Thermo Fisher Scientific). RESULTS Between July 2019 and November 2020, 49 patients were screened and 20 were classified FGFR-positive. Among a total of 15 patients, 6mPFS was reached in 1 patient (6.7 %), resulting in trial closure for futility after the first stage. There were 7 (46.7 %) patients with stable disease and 5 (33.3 %) patients with progressive disease. Median PFS was 1.6 (95 % CI 0.9-3.5) months and median overall survival (OS) 3.5 (95 % CI 1.0-5.9) months. Most frequent treatment-related adverse events (TRAEs) included hyperphosphatemia in 8 (53 %), diarrhea in 5 (33 %), stomatitis in 3 (20 %) and nail changes in 3 (20 %) patients. Grade ≥3 TRAEs occurred in 6 (40 %) patients. No associations between mutational profile and treatment outcome were observed. CONCLUSION Despite preliminary signals of activity, rogaratinib failed to improve PFS in patients with advanced SQCLC overexpressing FGFR mRNA. FGFR inhibitors in SQCLC remain a challenging field, and more in-depth understanding of pathway crosstalks may lead to the development of drug combinations with FGFR inhibitors resulting in improved outcomes

    Prognostic value of the autophagy markers LC3 and p62/SQSTM1 in early-stage non-small cell lung cancer.

    Get PDF
    Autophagy is a cellular degrading process that promotes tumor cell survival or cell death in cancer, depending on the progress of oncogenesis. Protein light chain 3 (LC3) and p62/SQSTM1 (p62) are associated with autophagosomal membranes that engulf cytoplasmic content for subsequent degradation. We studied LC3 and p62 expression using immunohistochemistry in a large cohort of 466 stage I/II non-small cell lung cancer (NSCLC) using a tissue microarray. We evaluated dot-like cytoplasmic expression of LC3 and dot-like, cytoplasmic and nuclear staining for p62 in relation to clinico-pathological parameters.LC3 expression correlated with all p62 patterns, as those correlated among each other (p < 0.001 each). There was no correlation with stage, age or gender. A combination of high LC3/high p62 dot-like staining (suggesting impaired autophagy) showed a trend for better outcome (p = 0.11). Interestingly, a combined low cytoplasmic/low nuclear p62 expression regardless of dot-like staining was an independent prognostic factor for longer survival (p = 0.006; HR=1.96), in addition to tumor stage (p = 0.004; HR=1.4).The autophagy markers LC3 and p62 are differentially expressed in NSCLC, pointing towards a biologically significant role. High LC3 levels seem to be linked to lower tumor aggressiveness, while high general p62 expression was significantly associated with aggressive tumor behavior

    Autoimmunity and immunodeficiency associated with monoallelic LIG4 mutations via haploinsufficiency

    Get PDF
    BACKGROUND: Biallelic mutations in LIG4 encoding DNA-ligase 4 cause a rare immunodeficiency syndrome manifesting as infant-onset life-threatening and/or opportunistic infections, skeletal malformations, radiosensitivity and neoplasia. LIG4 is pivotal during DNA repair and during V(D)J recombination as it performs the final DNA-break sealing step. OBJECTIVE: We explored whether monoallelic LIG4 missense mutations may underlie immunodeficiency and autoimmunity with autosomal dominant inheritance. METHODS: Extensive flow-cytometric immune-phenotyping was performed. Rare variants of immune system genes were analyzed by whole exome sequencing. DNA repair functionality and T cell-intrinsic DNA damage tolerance was tested with an ensemble of in vitro and in silico tools. Antigen-receptor diversity and autoimmune features were characterized by high-throughput sequencing and autoantibody arrays. Reconstitution of wild-type vs. mutant LIG4 were performed in LIG4 knock-out Jurkat T cells and DNA damage tolerance was subsequently assessed. RESULTS: A novel heterozygous LIG4 loss-of-function mutation (p.R580Q), associated with a dominantly inherited familial immune-dysregulation consisting of autoimmune cytopenias, and in the index patient with lymphoproliferation, agammaglobulinemia and adaptive immune cell infiltration into nonlymphoid organs. Immunophenotyping revealed reduced naïve CD4+^{+} T cells and low TCR-Vα7.2+^{+} T cells, while T/B-cell receptor repertoires showed only mild alterations. Cohort screening identified two other non-related patients with the monoallelic LIG4 mutation p.A842D recapitulating clinical and immune-phenotypic dysregulations observed in the index family and displaying T cell-intrinsic DNA damage intolerance. Reconstitution experiments and molecular dynamics simulations categorize both missense mutations as loss-of-function and haploinsufficient. CONCLUSION: We provide evidence that certain monoallelic LIG4 mutations may cause human immune dysregulation via haploinsufficiency

    Targeted Therapy in Advanced and Metastatic Non-Small Cell Lung Cancer. An Update on Treatment of the Most Important Actionable Oncogenic Driver Alterations

    No full text
    Due to groundbreaking developments and continuous progress, the treatment of advanced and metastatic non-small cell lung cancer (NSCLC) has become an exciting, but increasingly challenging task. This applies, in particular, to the subgroup of NSCLC with oncogenic driver alterations. While the treatment of epidermal growth factor receptor (EGFR)-mutated and anaplastic lymphoma kinase (ALK)-rearranged NSCLC with various tyrosine kinase inhibitors (TKIs) is well-established, new targets have been identified in the last few years and new TKIs introduced in clinical practice. Even for KRAS mutations, considered for a long time as an “un-targetable” alteration, promising new drugs are emerging. The detection and in-depth molecular analysis of resistance mechanisms has further fueled the development of new therapeutic strategies. The objective of this review is to give a comprehensive overview on the current landscape of targetable oncogenic alterations in NSCLC
    corecore