47 research outputs found
Manual Wheelchair Downhill Stability: An Analysis of Factors Affecting Tip Probability
Background For people who use manual wheelchairs, tips and falls can result in serious injuries including bone fractures, concussions, and traumatic brain injury. We aimed to characterize how wheelchair configuration changes (including on-the-fly adjustments), user variables, and usage conditions affected dynamic tip probability while rolling down a slope and contacting a small block.
Methods Rigid body dynamic models of a manual wheelchair and test dummy were created using multi-body software (Madymo, TASS International, Livonia, MI), and validated with 189 experiments. Dynamic stability was assessed for a range of seat angles (0 to 20° below horizontal), backrest angles (0 to 20°), rear axle positions (0 to 20 cm from base of backrest), ground slopes (0 to 15°), bump heights (0 to 4 cm), wheelchair speeds (0 to 20 km/hr), user masses (50 to 115 kg), and user positions (0 to 10 cm from base of backrest). The tip classifications (forward tip, backward tip, rolled over bump, or stopped by bump) were investigated using a nominal logistic regression analysis.
Results Faster wheelchair speeds significantly increased the probability of tipping either forward or backward rather than stopping, but also increased the probability of rolling over the bump (p < 0.001). When the rear axle was positioned forward, this increased the risk of a backward tip compared to all other outcomes (p < 0.001), but also reduced the probability of being stopped by the bump (p < 0.001 compared to forward tip, p < 0.02 compared to rolling over). Reclining the backrest reduced the probability of a forward tip compared to all other outcomes (p < 0.001), and lowering the seat increased the probability of either rolling over the bump or tipping backwards rather than tipping forward (p < 0.001). In general, the wheelchair rolled over bumps < 1.5 cm, and forwards tipping was avoided by reducing the speed to 1 km/hr.
Conclusions The probability of forward tipping, corresponding to the greatest risk of injury, was significantly reduced for decreased speeds, smaller bumps, a reclined backrest, and a lower rear seat height. For wheelchairs with dynamic seating adjustability, when travelling downhill, on-the-fly adjustments to the seat or backrest can increase the likelihood of safely rolling over a bump.
Background For people who use manual wheelchairs, tips and falls can result in serious injuries including bone fractures, concussions, and traumatic brain injury. We aimed to characterize how wheelchair configuration changes (including on-the-fly adjustments), user variables, and usage conditions affected dynamic tip probability while rolling down a slope and contacting a small block.
Methods Rigid body dynamic models of a manual wheelchair and test dummy were created using multi-body software (Madymo, TASS International, Livonia, MI), and validated with 189 experiments. Dynamic stability was assessed for a range of seat angles (0 to 20° below horizontal), backrest angles (0 to 20°), rear axle positions (0 to 20 cm from base of backrest), ground slopes (0 to 15°), bump heights (0 to 4 cm), wheelchair speeds (0 to 20 km/hr), user masses (50 to 115 kg), and user positions (0 to 10 cm from base of backrest). The tip classifications (forward tip, backward tip, rolled over bump, or stopped by bump) were investigated using a nominal logistic regression analysis.
Results Faster wheelchair speeds significantly increased the probability of tipping either forward or backward rather than stopping, but also increased the probability of rolling over the bump (p < 0.001). When the rear axle was positioned forward, this increased the risk of a backward tip compared to all other outcomes (p < 0.001), but also reduced the probability of being stopped by the bump (p < 0.001 compared to forward tip, p < 0.02 compared to rolling over). Reclining the backrest reduced the probability of a forward tip compared to all other outcomes (p < 0.001), and lowering the seat increased the probability of either rolling over the bump or tipping backwards rather than tipping forward (p < 0.001). In general, the wheelchair rolled over bumps < 1.5 cm, and forwards tipping was avoided by reducing the speed to 1 km/hr.
Conclusions The probability of forward tipping, corresponding to the greatest risk of injury, was significantly reduced for decreased speeds, smaller bumps, a reclined backrest, and a lower rear seat height. For wheelchairs with dynamic seating adjustability, when travelling downhill, on-the-fly adjustments to the seat or backrest can increase the likelihood of safely rolling over a bump.
 
Probing Mechanical Properties of Jurkat Cells under the Effect of ART Using Oscillating Optical Tweezers
Acute lymphoid leukemia is a common type of blood cancer and chemotherapy is the initial treatment of choice. Quantifying the effect of a chemotherapeutic drug at the cellular level plays an important role in the process of the treatment. In this study, an oscillating optical tweezer was employed to characterize the frequency-dependent mechanical properties of Jurkat cells exposed to the chemotherapeutic agent, artesunate (ART). A motion equation for a bead bound to a cell was applied to describe the mechanical characteristics of the cell cytoskeleton. By comparing between the modeling results and experimental results from the optical tweezer, the stiffness and viscosity of the Jurkat cells before and after the ART treatment were obtained. The results demonstrate a weak power-law dependency of cell stiffness with frequency. Furthermore, the stiffness and viscosity were increased after the treatment. Therefore, the cytoskeleton cell stiffness as the well as power-law coefficient can provide a useful insight into the chemo-mechanical relationship of drug treated cancer cells and may serve as another tool for evaluating therapeutic performance quantitatively
Welfare assessment of gas-filled foam as an agent for killing poultry
During outbreaks of notifiable diseases in poultry measures are taken to restrict the spread of the disease. Mass on-farm killing of birds using gasfilled foam is such a measure. This study examines the method and technologies involved using gas-filled foam and looks at the problems involved by scaling up the procedure. Methods and results are discussed in relation to poultry physiology and behaviour monitored during controlled studies. Recommendations are made for system design and an operational protocol is provided for practical on-farm implementation
Striving for humane deaths for laboratory mice: hypobaric hypoxia provides a potential alternative to carbon dioxide exposure
Killing is often an unavoidable and necessary procedure for laboratory mice involved in scientific research, and providing a humane death is vital for public acceptance. Exposure to carbon dioxide (CO2) gas is the most widely used methodology despite well proven welfare concerns. Consequently, the continued use of CO2 and its globally permitted status in legislation and guidelines presents an ethical dilemma for users. We investigated whether killing with hypobaric hypoxia via gradual decompression was associated with better welfare outcomes for killing laboratory mice. We compared the spontaneous behaviour of mice exposed to CO2, decompression or sham conditions, and used analgesic or anxiolytic interventions to determine their relative welfare impact. Gradual decompression resulted in longer times to unconsciousness and death and the pharmacological interventions support the notion of a minimally negative animal experience, while providing further evidence for pain and anxiety associated with exposure to CO2. Decompression resulted in moderate ear haemorrhage, but our welfare assessment suggests this may happen when mice are unconscious. Hence, gradual decompression could be the basis of significant refinement for killing laboratory mice. Future work should corroborate behaviour with neurobiological markers of loss of consciousness to verify the conscious phase of concern for animal welfare
The biomechanical implications of neck position in cervical contusion animal models of SCI
Large animal contusion models of spinal cord injury are an essential precursor to developing and evaluating treatment options for human spinal cord injury. Reducing variability in these experiments has been a recent focus as it increases the sensitivity with which treatment effects can be detected while simultaneously decreasing the number of animals required in a study. Here, we conducted a detailed review to explore if head and neck positioning in a cervical contusion model of spinal cord injury could be a factor impacting the biomechanics of a spinal cord injury, and thus, the resulting outcomes. By reviewing existing literature, we found evidence that animal head/neck positioning affects the exposed level of the spinal cord, morphology of the spinal cord, tissue mechanics and as a result the biomechanics of a cervical spinal cord injury. We posited that neck position could be a hidden factor contributing to variability. Our results indicate that neck positioning is an important factor in studying biomechanics, and that reporting these values can improve inter-study consistency and comparability and that further work needs to be done to standardize positioning for cervical spinal cord contusion injury models
Evaluation of the potential killing performance of novel percussive and cervical dislocation tools in chicken cadavers
1. Four mechanical poultry killing devices; modified Armadillo (MARM), modified Rabbit Zinger (MZIN), modified pliers (MPLI) and a novel mechanical cervical dislocation gloved device (NMCD), were assessed for their killing potential in the cadavers of euthanised birds of 4 type/age combinations: layer/adult, layer/pullet, broiler/slaughter-age and broiler/chick.
2. A 4x4x4 factorial design (batch x device x bird type + age) was employed. Ten bird cadavers per bird type and age were tested with each of the 4 devices (N = 160 birds). All cadavers were examined post-mortem to establish the anatomical damage caused by each device.
3. Three of the mechanical methods: NMCD, MARM and MZIN demonstrated killing potential, as well as consistency in their anatomical effects, with device success rates of over 50% indicating that the devices performed optimally more than half of the time. NMCD had the highest killing potential, with 100% of birds sustaining the required physical trauma to have caused rapid death.
4. The MPLI was inconsistent, and only performed optimally for 27.5% of birds, despite good killing potential when performing well. Severe crushing injury was seen in >50% of MPLI birds, suggesting that birds would die of asphyxia rather than cerebral ischaemia, a major welfare concern. As a result, the modified pliers are not recommended as a humane on-farm killing device for chickens.
5. This experiment provides important data on the killing potential of untried novel percussive and mechanical cervical dislocation methods, informing future studies
Compressive Mechanical Characterization of Non-Human Primate Spinal Cord White Matter
The goal of developing computational models of spinal cord injury (SCI) is to better understand the human injury condition. However, finite element models of human SCI have used rodent spinal cord tissue properties due to a lack of experimental data. Central nervous system tissues in non human primates (NHP) closely resemble that of humans and therefore, it is expected that material constitutive models obtained from NHPs will increase the fidelity and the accuracy of human SCI models. Human SCI most often results from compressive loading and spinal cord white matter properties affect FE predicted patterns of injury; therefore, the objectives of this study were to characterize the unconfined compressive response of NHP spinal cord white matter and present an experimentally derived, finite element tractable constitutive model for the tissue. Cervical spinal cords were harvested from nine male adult NHPs (Macaca mulatta). White matter biopsy samples (3 mm in diameter) were taken from both lateral columns of the spinal cord and were divided into four strain rate groups for unconfined dynamic compression and stress relaxation (post-mortem <1-hour). The NHP spinal cord white matter compressive response was sensitive to strain rate and showed substantial stress relaxation confirming the viscoelastic behavior of the material. An Ogden 1st order model best captured the non-linear behavior of NHP white matter in a quasi-linear viscoelastic material model with 4-term Prony series. This study is the first to characterize NHP spinal cord white matter at high (>10/sec) strain rates typical of traumatic injury. The finite element derived material constitutive model of this study will increase the fidelity of SCI computational models and provide important insights for transferring pre-clinical findings to clinical treatments