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ABSTRACT 

The goal of developing computational models of spinal cord injury (SCI) is to better understand 

the human injury condition. However, finite element models of human SCI have used rodent spinal 

cord tissue properties due to a lack of experimental data. Central nervous system tissues in non 

human primates (NHP) closely resemble that of humans and therefore, it is expected that material 

constitutive models obtained from NHPs will increase the fidelity and the accuracy of human SCI 

models. Human SCI most often results from compressive loading and spinal cord white matter 

properties affect FE predicted patterns of injury; therefore, the objectives of this study were to 

characterize the unconfined compressive response of NHP spinal cord white matter and present an 

experimentally derived, finite element tractable constitutive model for the tissue. Cervical spinal 

cords were harvested from nine male adult NHPs (Macaca mulatta). White matter biopsy samples 

(3mm in diameter) were taken from both lateral columns of the spinal cord and were divided into 

four strain rate groups for unconfined dynamic compression and stress relaxation (post-mortem 

<1-hour). The NHP spinal cord white matter compressive response was sensitive to strain rate and 

showed substantial stress relaxation confirming the viscoelastic behavior of the material. An 

Ogden 1st order model best captured the non-linear behavior of NHP white matter in a quasi-linear 

viscoelastic material model with 4-term Prony series. This study is the first to characterize NHP 

spinal cord white matter at high (>10/sec) strain rates typical of traumatic injury. The finite element 

derived material constitutive model of this study will increase the fidelity of SCI computational 

models and provide important insights for transferring pre-clinical findings to clinical treatments.  
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1 INTRODUCTION 

With recent progresses in spinal cord injury (SCI) pre-clinical trials [1,2], computational models 

of SCI have emerged as a powerful platform to bridge pre-clinical findings to humans as well as 

providing constructive insights into SCI mechanisms [3–5]. However, the fidelity and the accuracy 

of these computational models are critically dependent on their pre-defined material constitutive 

models [6,7]. By necessity, the majority of existing SCI computational models have used material 

constitutive models obtained from rodent [3–5,8,9] or porcine/bovine [10,11] tissue 

characterization. However, due to substantial morphological and physiological heterogeneity 

between these species and humans, examining a more human-like tissue and quantifying its 

constitutive properties is expected to improve the fidelity of human injury computational models.  

SCI can occur from a range of loading mechanisms [12]. Contusion SCIs are the most common 

type of injury observed clinically and used experimentally [13,14]. Characterization of these 

injuries in vivo, ex vivo and mathematically have shown a multiaxial state of strain/stress at the 

tissue level as a result of the injury [1,3,8,15–17]. Moreover, differentiating individual tissue 

characteristics (e.g. grey and white matters and pia mater) is necessary to more accurately predict 

patterns of injury across the cord structure [10,18]. There is significant evidence that suggests the 

spinal cord white matter structure is transversely isotropic due to the rostral-caudal alignment of 

axonal fibers in the white matter [19,20]. Therefore, the direction of loading (e.g. mechanical 

testing) affects the observed material properties of the white matter.  

Approaches to modelling transversely isotropic neurological materials include introducing the 

directional dependency of the material deformation into the strain energy function [21,22]. A first 

step in characterizing such materials is to characterize the material’s matrix [23,24]. The 
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longitudinally aligned axonal fibers in the white matter are embedded in a glial matrix that is 

devoid of a collagenous, structural extracellular matrix and has isotropic material properties [20]. 

Since the mechanical resistance of the fibers to compression in the fiber direction is negligible 

[25,26], rostro-caudal compressive testing of the white matter determines the isotropic isolated 

matrix characteristics with a negligible contribution of the fibers. Using more human-like subjects 

(NHPs) in this study will expand our understanding of the spinal cord white matter glial matrix 

and provide the opportunity to compare tissue characteristics between species. Further study is 

required to characterize the axonal fibers to augment the matrix characteristics to fully characterize 

the transversely isotropic material properties of spinal cord white matter [10,18,24,26]. However, 

this is a complex challenge due to the scale of available spinal cord white matter tissue samples (< 

2 mm). 

Unconfined compression tests have been used to characterize spinal cord [14,18] and brain [27–

32] white matter from a range of species. Despite advances in characterizing the brain tissue, 

differences in the biological responses of brain and spinal cord [33,34] and their corresponding 

structural difference (e.g. fiber orientation, density and alignment) have restricted the use of brain 

white matter characteristics for the spinal cord. Spinal cord white matter has been characterized 

using quasi-static [5,18], 0.5 to 0.005 mm/sec deformation velocities [35] and 0.005/sec to 5.0/sec 

strain rate test data [14]. More recently, whole cords have been characterized using non-linear 

viscoelastic models for low strains (<5%) and moderate strain rates (0.1/sec) [36]. However, 

during a typical traumatic SCI the spinal cord undergoes large deformations at strain rates of 

approximately 110/sec [37,38]. Knowing that the impact velocity substantially affects the pattern 

and severity of the SCI [39], characterizing the tissue at higher strain rates is crucial for more 

accurate SCI models. Existing computational models of SCI have adopted viscoelastic parameters 
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from brain studies [3,8,40], however, applying a constitutive model obtained from combining 

spinal cord and brain tissues neglects the tissue specific characteristics. Furthermore, the 

degenerative effects of time post-mortem on the mechanical properties of the neurological tissues 

have been acknowledged [41,42]. Tissue degradation starts quickly after animal sacrifice due to 

complex enzymatic and microbiological processes [30,41,42]. However, due to difficulties in 

accessing the tissue and testing logistics, the time post-mortem has exceeded 3 hours in published 

spinal cord experiments [14,35,43,44]. The tangent modulus of the spinal cord tissue has been 

reported to nearly double over the period of 3 to 72 hours post-mortem [42]. To minimize the 

effect of post mortem degradation on the measured tissue characteristics samples should tested as 

soon as possible after death. This study aimed to characterize freshly harvested (post-mortem time 

< 1 hour) NHP spinal cord white matter at high strain rates using unconfined compression testing 

to better approximate the in vivo tissue response. 

The goal of this study was to characterize the NHP spinal cord white matter mechanical 

behavior using fresh specimen and at high strain rates (as compared to existing studies). Specific 

objectives were to: (1) measure the time dependent mechanical response of the NHP spinal cord 

white matter through unconfined uniaxial compressive tests at strain rates approaching traumatic 

SCI rates; (2) explore the effects of applied strain rate on the NHP spinal cord white matter 

mechanical response; and (3) to determine a time-dependent material model with optimized 

material parameters capable of capturing the NHP spinal cord white matter mechanical behavior.  
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2 METHODS 

2.1 Experiment 

Spinal cords were collected for unconfined compression testing from the cervical spines (C1-

C7) of nine adolescent (52.6±5.9 months old) male Macaca mulatta NHPs (7.44±1.31kg) 

immediately (<20minutes) after euthanasia. The spinal cords were detached from the spinal canal 

by cutting through denticulate ligaments and the nerve roots. Dorsal root entry zones of C5 and 

C6 were used for identification of each spinal segment. The dura mater was removed and the spinal 

cord segments briefly placed in phosphate-buffered saline (PBS) prior to being tested. Transverse 

slices of 1.99±0.28mm height were dissected out from the spinal cords using a 3-mm biopsy punch 

resulting in cylindrically shaped portions of white matter collected from the lateral columns. White 

matter samples were placed on aluminum platens on the test bench system (linear actuator 

Electroforce3200 equipped with a 10N load cell; TA Instruments, New Castel, DE) and 

compressed rostro-caudally. The tests were accomplished within one-hour post-mortem. Each test 

was recorded using a high-frame rate (120 Hz) camera (GoPro Inc., USA) to document the actual 

sample dimensions (height and diameter) and to monitor any buckling or bulging at maximum 

compression. Sample diameter and height were used to calculate undeformed area and initial 

length respectively. Test videos were carefully inspected and samples with any signs of buckling 

or bulging were removed from further analysis. To reduce inertia effects during loading, the load 

cell was mounted on the fixed side.  

A total of 75 tests were performed; however, despite consistent test conditions and a high 

precision test system, some samples showed excessive noise (N=4) in the load cell signal that 

obscured the test data or buckled/bulged during testing (N=6). These 10 samples were removed 

from further analysis. Samples were compressed for 1mm in four pre-set deformation velocities of 
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0.5mm/sec, 5.0mm/sec, 50.0mm/sec and 150.0mm/sec where the highest rate was the fastest 

velocity possible with our test system and other velocities were set so that the resulting strain rates 

were comparable with previous spinal cord [14] and brain [28,45] white matter studies. The pre-

set deformation velocities resulted in groups with strain rates of (mean standard± deviation) 

0.32±0.02/sec (ultra-low), 2.83±0.56/sec (low), 25.47±4.06/sec (medium) and 77.22±15.16/sec 

(high) with 5, 20, 21 and 19 samples respectively. Engineering stress (force over the undeformed 

area) and strain (machine head displacement over the sample initial height) were calculated for 

each test. The resulting peak strains varied (0.19 < ε < 0.68) due to variability in the samples’ 

heights and the machine control protocol. To better mimic in vivo conditions, samples were not 

preconditioned in this experiment [14,46]. To ensure a consistent zero position, all the samples 

were preloaded to 0.05 N before the test started. The stress-relaxation behavior of the NHP white 

matter was observed by holding the peak strain for 60 seconds and the force and deformation were 

recorded (sampling time was 0.0004 seconds).  

2.2 Statistical analysis 

The effect of strain rate on stress was determined using an ANCOVA by comparing stress levels 

at fixed strain increments (0.1, 0.2, 0.3 and 0.4) between strain rate groups with a Tukey-Kramer 

post-hoc HSD analysis (α=0.05). Animal weight and age were included as covariates in the model. 

To evaluate the effect of strain rate on the amount of stress relaxation, the amount of stress relaxed 

after 60 seconds was normalized against the peak stress for each test, grouped by strain rate, and 

compared using an ANCOVA with a Tukey-Kramer HSD post-hoc analysis (𝛼𝛼 = 0.05). Again, 

animal weight and age were included as covariates. 
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2.3 Constitutive model definition 

To find a FE tractable constitutive model that describes the white matter compressive response 

for large deformation explicit analysis, a hyperelastic material model that best fit the stress-strain 

response was required. This hyperelastic model was combined with a Prony series expansion to 

quantify the viscoelastic response of the material [10,14,47,48].  

Table 1: Incompressible strain energy functions and the uniaxial engineering stress response for each strain energy function. 

𝐶𝐶𝑖𝑖𝑖𝑖 , 𝜇𝜇  and 𝛼𝛼 are the material parameters and 𝜆𝜆𝑈𝑈 is the principal stretch in the uniaxial loading direction. Uniaxial response is 

obtained from 𝑃𝑃𝑢𝑢𝑢𝑢𝑖𝑖𝑢𝑢𝑢𝑢𝑖𝑖𝑢𝑢𝑢𝑢 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝜆𝜆𝑈𝑈

− 1
𝜆𝜆𝑈𝑈
𝑝𝑝, where 𝑝𝑝 is determined using uniaxial loading boundary conditions. 

Hyperelastic 
model 

Incompressible energy function 1st Piola-Kirchhoff uniaxial response Optimization constraints 

Mooney-
Rivlin 

𝜓𝜓1 = 𝐶𝐶10(𝐼𝐼1 − 3) + 𝐶𝐶01(𝐼𝐼2 − 3)

+ 𝑝𝑝(𝐽𝐽 − 1) 
𝑃𝑃𝑈𝑈1 = 2(1− 𝜆𝜆𝑈𝑈−3)(𝐶𝐶10𝜆𝜆𝑈𝑈 + 𝐶𝐶01) 𝐶𝐶10 + 𝐶𝐶01 > 0 ; 𝐶𝐶10

𝐶𝐶01
> 1 

Polynomial 
(N=2) 𝜓𝜓2 = � 𝐶𝐶𝑖𝑖𝑖𝑖(𝐼𝐼1 − 3)𝑖𝑖(𝐼𝐼2 − 3)𝑖𝑖

2

𝑖𝑖+𝑖𝑖=1

+ 𝑝𝑝(𝐽𝐽 − 1) 

𝑃𝑃𝑈𝑈2 = 2(1− 𝜆𝜆𝑈𝑈−3){𝐶𝐶10𝜆𝜆𝑈𝑈 + 𝐶𝐶01 + 2𝐶𝐶20𝜆𝜆𝑈𝑈(𝐼𝐼1 − 3) + 

𝐶𝐶02�𝐼𝐼1 − 3 + 𝜆𝜆𝑈𝑈(𝐼𝐼2 − 3)�+ 2𝐶𝐶11(𝐼𝐼2 − 3)} 

𝐶𝐶10 + 𝐶𝐶01 > 0  

𝐶𝐶10
𝐶𝐶01

> 1 ; 𝐶𝐶20
𝐶𝐶02

> 1 

Reduced 
polynomial 

(N=2) 

𝜓𝜓3 = 𝐶𝐶10(𝐼𝐼1 − 3) + 𝐶𝐶20(𝐼𝐼1 − 3)2

+ 𝑝𝑝(𝐽𝐽 − 1) 

𝑃𝑃𝑈𝑈3 = 2(𝜆𝜆𝑈𝑈 − 𝜆𝜆𝑈𝑈−2)(𝐶𝐶10𝜆𝜆𝑈𝑈 + 2𝐶𝐶20(𝐼𝐼2 − 3)) 𝐶𝐶10 + 𝐶𝐶20 > 0 ; 𝐶𝐶10
𝐶𝐶20

> 1 

Yeoh 
𝜓𝜓4 = �𝐶𝐶𝑖𝑖0(𝐼𝐼1̅ − 3)𝑖𝑖

3

𝑖𝑖=1

+ 𝑝𝑝(𝐽𝐽 − 1) 
𝑃𝑃𝑈𝑈4 = 2(𝜆𝜆𝑈𝑈 − 𝜆𝜆𝑈𝑈−2)(𝐶𝐶10𝜆𝜆𝑈𝑈 + 2𝐶𝐶20(𝐼𝐼1 − 3)

+ 3𝐶𝐶30(𝐼𝐼1 − 3)2) 

𝐶𝐶10 + 𝐶𝐶30 > 0 ; 𝐶𝐶10
𝐶𝐶30

> 1 

Ogden (1st 
order) 𝜓𝜓5 =

2𝜇𝜇
𝛼𝛼2

(𝜆𝜆1𝛼𝛼 + 𝜆𝜆2𝛼𝛼 + 𝜆𝜆3𝛼𝛼 − 3) 𝑃𝑃𝑈𝑈5 =
2𝜇𝜇
𝛼𝛼
�𝜆𝜆𝑈𝑈

𝛼𝛼−1 + 𝜆𝜆𝑈𝑈
−12𝛼𝛼−1� 𝛼𝛼 > 1 ;  𝛼𝛼 < −1 ;  𝜇𝜇 > 0 

 

Loading data of each strain rate group (i.e. ultralow, low, medium and high) samples were 

pooled to form a point cloud data for each strain rate group in order to find the average response 

of the experimental tests. Five well established incompressible isotropic hyperelastic constitutive 

models (Table 1) were fit to the pooled data. The strain energy function was formulated as,  

𝜓𝜓 = 𝜓𝜓(𝐼𝐼1, 𝐼𝐼2) − 𝑝𝑝(𝐽𝐽 − 1)       𝑜𝑜𝑜𝑜        𝜓𝜓 = 𝜓𝜓(𝜆𝜆1, 𝜆𝜆2, 𝜆𝜆3) − 𝑝𝑝(𝐽𝐽 − 1)  (1) 
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where 𝜆𝜆𝑖𝑖 (𝑖𝑖 = 1,2,3) are the three principal stretches, 𝐼𝐼1 and 𝐼𝐼2 are the first and second strain 

invariants, 𝐽𝐽 is the determinant of the deformation gradient tensor and the 𝑝𝑝 is identified as a 

hydrostatic pressure [49]. Model parameters were obtained through constrained nonlinear 

optimization using fmincon (Matlab R2015b, The MathWorks Inc Natick, MA) with a wide range 

of randomly generated initial guesses to ensure the global minimum was achieved. Drucker 

stability was imposed in fitting the hyperelastic models while the corresponding constraints (Table 

1) were also applied to each model [27,50]. The appropriateness of the model was assessed based 

on the fit to the data (𝑅𝑅2) and the complexity of the model (i.e. less complex model was preferred). 

2.4 Viscoelastic formulation 

Quasi-linear viscoelastic (QLV) theory has provided good fits to our prior high strain 

experimental data for spinal cord white matter [10,14] and has been used in several studies 

modeling the high strains and strain rates of traumatic spinal cord injury [3,8,10,14]. QLV models 

have the benefits of being more easily implemented in commercial software and more 

computationally cost effective in explicit, large deformation, FE models. In addition, the QLV 

model has been shown to successfully predict the patterns of injury and tissue level stresses/strains 

in computational studies of SCI [3,8,10]. The QLV model was implemented using the most 

suitable hyperelastic models identified in the previous section. For the hyperelastic material, the 

QLV behavior was represented by a Prony series expansion of the dimensionless relaxation 

modulus applied directly to the strain energy function [27,50],  

𝑊𝑊(𝑡𝑡) = ∫ �𝑔𝑔𝑅𝑅(𝑡𝑡 − 𝜏𝜏) 𝑑𝑑𝜕𝜕
𝑑𝑑𝑑𝑑
� 𝑑𝑑𝜏𝜏𝑡𝑡

0    (2) 

where 𝑊𝑊 denotes the time dependent strain energy, 𝑡𝑡 is time, 𝜓𝜓 is the hyperelastic strain energy 

function (Table 1) and 𝑔𝑔𝑅𝑅(𝑡𝑡) is dimensionless relaxation function,  
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𝑔𝑔𝑅𝑅(𝑡𝑡) = 1 − ∑ 𝑔𝑔𝑖𝑖(1 − 𝑒𝑒−𝑡𝑡 𝑑𝑑𝑖𝑖⁄ )𝑁𝑁
𝑖𝑖=1    (3) 

where 𝑔𝑔𝑖𝑖is the relative moduli and 𝜏𝜏𝑖𝑖 is the relaxation time of 𝑖𝑖th term in the Prony series and 

𝑁𝑁 is the number of terms in the Prony series.  

The optimized parameters were determined through inverse FE analysis by simulating the 

compressive experiments and fitting the results to the experimental responses (loading portion). 

The average high and ultralow strain rate group behaviors were each simulated in ABAQUS (v6.14 

Dassault Systems Simulia Corp., Providence, RI). The FE models were generated using the 

average diameter and height of all the samples (h=1.99mm, d=3.59mm) (Figure 1).  Models were 

meshed with 0.15mm continuum elements (C3D8R) following a mesh convergence analysis. The 

platens were modeled as analytically rigid surfaces.  The coefficient of friction (µ) for the contact 

between the platen and the white matter samples was assumed to be slip rate dependent with µ 

equal to 0.09, 0.18 and 0.18 at strain rates of 1/sec, 30/sec and 60/sec respectively [51]. ABAQUS 

linearly interpolates between these values based on the slip rate at the surface to determine the 

proper coefficient of friction.  

Figure 1: (A) White matter sample in the test apparatus, sample is compressed between the two platens. Simulation of the 

compressive tests in ABAQUS is shown in undeformed (A) and deformed (B) configurations. 

 

To avoid numerical ill-conditioning caused by a fully incompressible constitutive model 

definition in the FE implementation, white matter material compressibility was allowed 
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(𝜐𝜐=0.4995) in the simulations [10,50,52]. The bottom platen was fixed and the samples were 

compressed by displacing the top platen. The force and displacement of the top platen reference 

point were recorded to calculate the engineering stresses and strains respectively. In this study, the 

reduced time constants in the Prony series assumed a priori to be approximately equal to the 

average duration of loading in each strain rate group and our pilot studies showed that a 4-term 

Prony series was required for this QLV model (i.e. 𝜏𝜏1=0.01sec,  𝜏𝜏2=0.02sec,  𝜏𝜏3=0.2sec and 

𝜏𝜏4 =2.0sec) [48,53]. A nonlinear constraint optimization algorithm (interior-point, fmincon, 

MATLAB, R2016b, The MathWorks Inc., Natick, MA), which iteratively invoked a Python code 

to run the ABAQUS simulations determined the model parameters. The optimization constraints 

were updated in each iteration based on the previous iteration results. The cyclic procedure 

continued until the coefficients converged to a single set of coefficients with four decimal 

accuracy. The corresponding 𝑅𝑅2 values were used to quantify the fits. 

Once the optimal parameters were determined from optimizing between high and ultralow 

strain rates, the optimal parameters were implemented to simulate all the four strain rate 

experiments (loading and relaxation). To assess the fit of each model, the root mean square error 

(RMSE) of one standard deviation of the experimental data (loading and relaxation) was compared 

with the RMSE of the fitted model for each strain rate group [54,55]. If the RMSE of the fitted 

model was less than the RMSE of one standard deviation of the experimental data, the model was 

considered to be a suitable fit. Furthermore, the model was reviewed to ensure the predicted fit 

stayed within one standard deviation of the mean experimental data at all time points.  
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3 RESULTS 

3.1 Experimental results 

The average peak stresses increased with increased strain rate and peak strain (Figure 2). Strain 

rate had a significant effect on the stress level in all strain increments (𝑝𝑝 < 0.0001), however, 

animal age, weight and age-weight interaction did not significantly affect the stress levels. At 10% 

strain, the high rate data was significantly different from the other rates; however, at the other 

strain increments (i.e. 20%, 30% and 40%) the high and medium rates were significantly different 

from low and ultralow but not from each other (𝑝𝑝 < 0.05). For the latter increments, the stress 

levels at the low and ultralow strain rate groups were also not significantly different from each 

other (Figure 3). On average, the percent decrease in stress after 60 seconds was significantly (𝑝𝑝 <

0.05) higher in the high (92.7 ± 3.4 %), medium (91.5 ± 5.3 %) and low (88.6 ± 5.3 %) strain rate 

groups compared to the ultralow group (77.7 ± 2.2 %). Averaged stress-strain responses showed 

an increase in the stiffness of the material with increased strain rate except for the high strain rate 

group where the stiffness increased quickly in low strains (<0.1) then decreased (0.1-0.2) and then 

increased to reach the peak. 
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Figure 2: NHP spinal cord white matter average compressive stress-strain response grouped by strain rate. Average stress 

increased by increasing strain rate in all strain rate groups. Error bars show the standard deviation of the stress. 

 

Figure 3: Interquartile ranges (boxes) and medians (lines within each box) of stress levels at 10%, 20%, 30% and 40% strain 

increments for the four strain rate groups. Whiskers are extended to include the range of all data in the sample group. In each 

strain rate group, stress levels not connected by the same letter are significantly different (Tukey–Kramer HSD). Labels U, L, M 

and H refer to ultralow, low, medium and high rate groups respectively 

 

3.2 Constitutive model definition  

Experimental variability increased with increasing strain rate across the four groups, with stress 

coefficients of variations between 0.21-0.28, 0.313-0.52, 0.44-0.75 and 0.49-0.66 for the ultralow, 
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low, medium and high strain rate groups respectively. The hyperelastic models fit to all 

experiments at a single strain rate (point cloud data) showed that the 1st order Ogden, Mooney-

Rivlin, and Yeoh models better captured the material behavior (Figure 4) in all strain rate groups 

(0.82< 𝑅𝑅2 <0.86) compared to the reduced polynomial (0.58< 𝑅𝑅2 <0.74) and the 2nd order 

polynomial (0.14<𝑅𝑅2<0.79). Although the Yeoh model was able to predict the tissue behavior, 

this model contains three invariants (compared to Ogden and Mooney-Rivlin with two invariants) 

which would increase the complexity of the model in the viscoelastic formulation and FE 

implementation. Therefore, the Mooney-Rivlin and Ogden hyperelastic models were selected to 

develop the viscoelastic formulation.  

Figure 4: Representative pooled stress-strain data points for medium strain rate group. Data for all the samples with same 

rate group were pooled to form a cloud of data and fit with the hyperelastic models. The fits of the five constitutive models for the 

medium strain rate compressive response are presented. The average response is also presented in the figure for comparison. 

Mooney-Rivlin model best fitted the data while polynomial model had the weakest fit in this strain rate group. The Ogden, Mooney-

Rivlin and Yeoh model results are coincident for this strain rate group. 
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3.3 Results of the viscoelastic fit 

RMSEs of one standard deviation from the experimental mean were 2.84kPa, 3.01kPa, 3.33kPa 

and 5.24kPa for the high, medium, low and ultralow strain rates respectively. Given the variability 

of the experimental data, the Ogden QLV model (4-term Prony series) with the optimized 

parameters (Table 2) predicted the material behavior with RMSEs (2.77kPa, 2.60kPa, 2.73kPa and 

3.64kPa for high, medium, low and ultralow respectively) that were lower than the experimental 

RMSEs. The Mooney-Rivlin QLV model (4-term Prony series) also predicted the high, medium 

and low strain rates with RMSEs of 3.34kPa, 3.02kPa and 3.73kPa respectively, however, was not 

able to predict the ultralow rate group (RMSE=5.35kPa compared to experiment RMSE=5.24kPa). 

For both Ogden and Mooney-Rivlin QLV models, the FE responses well fit within the one standard 

deviation from the mean for high, medium and low strain rate groups (Figure 5-a, b and c).  

Table 2: Optimized parameters of 1st order Ogden and Mooney-Rivlin 4-term QLV models. The reduced times for the Prony 

series were 𝜏𝜏1 = 0.01 sec, 𝜏𝜏2 = 0.02 se c, 𝜏𝜏3 = 0.2 and 𝜏𝜏4 = 2.0 sec.  

QLV model Model Parameters 

1st order 
Ogden 

𝛼𝛼 𝜇𝜇 [kPa] 𝑔𝑔1 𝑔𝑔2 𝑔𝑔3 𝑔𝑔4 

4.63 8.28 0.5296 0.3107 0.0141 0.0016 
Mooney-
Rivlin 

𝐶𝐶10[kPa] 𝐶𝐶01[kPa] 𝑔𝑔1 𝑔𝑔2 𝑔𝑔3 𝑔𝑔4 

3.27 0.91 0.5256 0.3163 0.1250 0.0071 

 

In the ultralow strain rate regime, the Ogden QLV model loading response fit within the one 

standard deviation lines, however, the Money-Rivlin QLV loading response was softer than the 

experiments (Figure 5-d). Increasing the number of Prony series terms beyond four did not affect 

the accuracy of the predictions in the models.  
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Figure 5: Ogden and Mooney QLV model predictions for (a) high, (b) medium, (c) low and (d) ultralow strain rate groups. 

The mean experimental response (blue line) is shown with one standard deviation of the mean (red and yellow lines) to demonstrate 

the experimental variability. The horizontal axis represents time [sec] in all of the plots. The number of data points have been 

reduced from original 0.0004 sec for better visualization of the model results. 

 

4 DISCUSSION 

Variations in the mechanical properties of brain across different species [56–58] suggest that 

using spinal cord white matter constitutive models obtained from animal tissue tests in human SCI 

models may introduce inaccuracies. However, testing human tissue is limited by accessibility and 

post-mortem time effects [42]. Central nervous system tissues in NHPs closely resemble humans 

[1] and therefore, it is expected that material constitutive models obtained from NHPs will increase 

the fidelity and the accuracy of human SCI models. As most traumatic SCIs in humans result from 
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compressive loading on the spinal cord, characterizing the compressive response of the spinal cord 

white matter to traumatic insults is essential. This study is the first to characterize NHP spinal cord 

white matter mechanical properties; and is the first to test spinal cord white matter at injurious 

strain rates (𝜀𝜀 ̇>10/sec) typical of traumatic SCI, using fresh samples (post-mortem time < 1-hour). 

The primary strength of this study was the use of NHP tissues as NHPs more closely resemble 

humans. Time post-mortem has been shown to have a significant effect on mechanical response 

of neurological tissues [41,42]. Completing the compressive tests within 1-hour post-mortem 

should reduce tissue degradation and preserve the tissue integrity. During traumatic SCIs, the 

spinal cord (and its constituents) experience high strains over a short time; however, due to the 

lack of experimental data at strain rates typical of traumatic impact, existing viscoelastic models 

were established using low to moderate strain rate tests and the traumatic injury strain rate response 

was unclear [10,14,43,54]. The high strain rate tests in this study provide critical information on 

the viscoelastic behavior of the spinal cord white matter immediately after loading which has 

manifested itself in the Prony series relaxation times (𝜏𝜏𝑖𝑖’s in equation (3)), and have enabled a one 

order of magnitude reduction in relaxation times (i.e. 𝜏𝜏1=0.01sec compared to 0.1sec<𝜏𝜏𝑖𝑖 ’s in 

previous studies). This new constitutive model will increase the accuracy of spinal cord FE models 

in predicting the overall in vivo impact mechanics of traumatic impact injuries and the immediate 

time after injury. Increased model accuracy may provide important insights into the role and timing 

of decompression on spinal cord stresses.  

The NHP spinal cord white matter average compressive response was slightly stiffer than the 

porcine spinal cord white matter reported at comparable strain rates (low and ultralow) [14]; 

however, the stiffness difference increased with increasing strain rate (Figure 6). The porcine brain 

showed a stiffer compressive response at ultralow strain rates [27]; while the bovine brain was 
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much stiffer than NHP spinal cord white matter in ultralow rates [59]. No higher strain rate data 

(>5.0/sec) for spinal cord white matter exists for comparison to the medium and high rate groups 

in this study. NHP white matter showed similar behavior to porcine brain results at medium and 

high strain rates [28]. However, Rashid and colleagues reported stiffer material properties for 

porcine brain at comparable strain rates [45] (Figure 6). Considering the experimental variability 

in both the previous tests and our tests, our results were within the range of reported values of 

previous studies. The variability in reported experimental results highlight the difficulties in 

reliably testing this ultra-compliant tissue and the potential confounding effects of numerous 

experimental variables such as species, structure, location of tissue sampled, postmortem time, 

processing and storage parameters. The reliability of the data will continue to improve with large 

scale testing while controlling for or observing and reporting as many of these experimental 

variables as possible. 

The inverse FE modelling method used for optimization in this study has been previously used 

in brain [26,60–62] parameter characterization. However, previous spinal cord viscoelastic 

modeling efforts have analytically fit the experimental response to constitutive formulations in 

order to find the material properties [14,44,54]. As this method does not replicate the material’s 

multiaxial (e.g. transverse) state of loading, it inherently hinders the accuracy of the determined 

material parameters and the model. The advanced optimization method using inverse FE in this 

study which directly incorporates FE models of the experimental tests in the parameter 

optimization, considers the off-axis loading responses, and provides a more accurate FE-adoptable 

constitutive model for the material. 
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Figure 6: Comparison of the compressive behavior of spinal cord and brain white matter in different studies based on the 

applied strain rate. NHP spinal cord white matter was stiffer than porcine white matter in comparable strain rates and was close 

to brain white matter at higher strain rates. Error bars show standard deviation of the stress. 

 

Studies of rat ligaments and the spinal cord suggest that the QLV model is insufficient for 

predicting these soft tissues’ viscoelastic behavior and that fully nonlinear models are required to 

capture physiological behavior [54,63]. However, these studies investigated the material behavior 

in low strain ranges (<5%) and did not expand their findings for large strains. For the range of 

peak strains, at the high strains and strain rates explored in this study, the QLV model was able to 

capture the material’s behavior. A primary strength of the proposed QLV model presented in this 

study is that the QLV formulation is a built-in model in most commercially available FE software 

(e.g. ABAQUS) and therefore it is easier to implement in related FE analysis. Further testing of 

the tissue at a range of peak strains representative of both physiological and injury loading and in 

both stress relaxation and creep will help to determine if a more complicated material model is 
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required to represent the tissue response more generally. However, the QLV model was able to 

simulate the high strain and high strain rate loading typical of traumatic injury. 

Efforts in reducing the time post-mortem as well as the complexity of the tissue harvesting 

process introduced different challenges to this study and caused some limitations. Cutting uniform 

tissue samples in this ultra-soft tissue at the scale needed for these tests is difficult, however, we 

tried to reduce human error by using a pre-set 3mm biopsy punch. More importantly, relating 

machine head displacements to each sample’s strain is challenging and may have led to 

inaccuracies in strain calculations. Our assumption [14,44,47,48] was to consider the machine head 

displacement as the sample deformation which requires the sample’s transverse sections to remain 

plane in the loading process. The shear contact force generated between the white matter and the 

platen may have caused violations from the plane sections assumption. In addition, although the 

camera system (120Hz, GoPro Inc., USA) used in this study was not fast enough to record the 

entire high strain rate tests, filtering buckled and bulged tests was enabled by combining the 

recorded frames with the force readouts and visual inspection of the samples at the end of the 

procedure. The constitutive models presented in this study were limited to characterizing the 

mechanical response of the tissue to large strains but did not specifically incorporate damage in 

the material model. Damage may have occurred in the samples compressed beyond their 

physiological deformation range but structural damage was not directly observed in this study. By 

not accounting for damage accumulation in this model, the authors acknowledge that this limits 

the generalizability of the model and may not accurately represent stress softening or subsequent 

tissue loading – though these are not typically observed in SCI models. Further work will be 

required to define the structural and functional failure limits for spinal cord white matter and to 

derive constitutive models capable of incorporating damage. Finally, the filter settings were 
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changed on the load cell during this series of tests which resulted in a phase lag being introduced 

in a subset of the data. A correction factor was determined by running similar experiments on 

surrogate tissue samples to ensure all data was being analyzed on the same timeline [40]. 

The material constitutive model presented in this study has been characterized based on the 

compressive behavior of the NHP spinal cord white matter. This material model does not account 

for the anisotropy of the white matter introduced by the presence of axonal fibers [10,18]. 

Therefore, the accuracy of the presented constitute model is limited to compressive loading cases. 

Extrapolating these results to capture the material’s tensile behavior or to model the multi-axial 

loading state of the spinal cord during SCI without including anisotropy may hinder the ability of 

the SCI model to correlate tissue damage to the mechanical outcomes [10]. Further tensile/shear 

experimental tests are required to determine the anisotropic behavior of NHP white matter and 

integrate those results to improve the capability of the current constitutive model. However, due 

to the scale of the NHP spinal cord white matter samples, conducting tensile and shear tests will 

be highly complex [64].  

Directly measuring spinal cord white matter tissue properties in the body would be ideal; 

however, current technologies are insufficient for isolating white matter tissue properties at the 

high speeds and high strains typical of injury. While non-invasive magnetic resonance 

elastography (MRE) methods may have the potential to characterize spinal cord tissue in-vivo; the 

feasibility of MRE for characterizing spinal cord tissue has not been validated [65]. Although MRE 

has been used to characterize brain tissue and differentiate in-vivo versus in vitro responses of 

brain tissues assuming isotropy [66–72] or transverse isotropy [73], current MRE applications are 

limited to strains that are insufficient for characterizing the large strains associated with the highly 
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nonlinear SCI phenomenon. In addition, isolating spinal cord white matter might be challenging 

in MRE methods due to the small sizes of the tissue compared to MRE wavelengths [74]. 

Using NHPs to study SCI has been widely revisited recently [1,75,76] since these models 

increase the fidelity and reliability of SCI models in transferring pre-clinical findings to humans 

[75]. However, primates are highly variable morphologically (i.e. weight, skeleton, etc.) and much 

more expensive than other animal models (e.g. rodents, porcine, etc.). FE models are a critical step 

in generating a predictable injury foundation as well as improving the repeatability of the models 

by providing insight to SCI mechanisms and injury mechanics. Similarly, human FE models of 

SCI are critical for assessing mechanical injury prevention strategies (e.g. helmets, seatbelts, etc.) 

and may provide insight into the mechanisms of clinical treatments (e.g. decompression surgery). 

Susceptibility of FE model outcomes (such as patterns of injury) to predefined material constitutive 

models [8,10,77] highlights the need for accurate characteristics for the constituent materials. So 

far, computational human SCI models have extrapolated their material properties from rodents, 

pigs and bovine [4,11]. Our study provides NHP spinal cord material characteristics that eliminate 

the need for extrapolating these material properties from heterogeneous animals. 

5 CONCLUSION 

In conclusion, we showed that NHP spinal cord white matter is highly sensitive to loading rate, 

specifically, it is substantially stiffer at very high loading rates typical of traumatic SCI. In this 

study we determined the constitutive properties of the isotropic spinal cord white matter glial 

matrix. Further experiments will be required to quantify the contributions of the embedded axonal 

fibers to NHP white matter anisotropy. The constitutive model evaluation demonstrated that at 

large deformations both loading and relaxation regimes of the NHP spinal cord compressive 
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behavior are adequately captured by a QLV model. Importantly, our results showed the NHP spinal 

cord white matter to have similar properties to those previously reported for porcine spinal cord 

white matter and brain white matter in compression. This indicates that constitutive models derived 

from these other tissue sources may provide an adequate representation of spinal cord white matter 

characteristics without requiring the logistical and ethical complexities of accessing fresh NHP or 

human tissues. 
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