398 research outputs found

    A realistic two-lane traffic model for highway traffic

    Full text link
    A two-lane extension of a recently proposed cellular automaton model for traffic flow is discussed. The analysis focuses on the reproduction of the lane usage inversion and the density dependence of the number of lane changes. It is shown that the single-lane dynamics can be extended to the two-lane case without changing the basic properties of the model which are known to be in good agreement with empirical single-vehicle data. Therefore it is possible to reproduce various empirically observed two-lane phenomena, like the synchronization of the lanes, without fine-tuning of the model parameters

    Differentiation Potential of Pancreatic Fibroblastoid Cells/Stellate Cells: Effects of Peroxisome Proliferator-Activated Receptor Gamma Ligands

    Get PDF
    Pancreatic stellate cells have been investigated mostly for their activation process, supposed to support the development of pancreatic disease. Few studies have been presented on reversal of the activation process in vitro. Thiazolidinediones (TZDs) have been used as antidiabetics and have now been reported to exert antifibrotic activity. We tested effects of natural and synthetic ligands of peroxisome proliferator-activated receptor gamma (PPARγ) on human pancreatic fibroblastoid cells (hPFCs) in search for specificity of action. Ciglitazone, as a prototype of TZDs, was shown to have reversible growth inhibitory effects on human pancreatic fibroblastoid cells/stellate cells. Cells treated with ciglitazone for three days showed enhanced lipid content and induction of proteins involved in lipid metabolism. Collagen synthesis was reduced in hPFC. Interaction of PPARγ with DNA binding sites upon ligand binding was shown by gel shift analysis. These findings point toward a potential for adipocyte differentiation in human pancreatic fibroblastoid cells

    Complications of fixed infrared emitters in computer-assisted total knee arthroplasties

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The first stage in the implant of a total knee arthroplasty with computer-assisted surgery is to fasten the emitters to the femur and the tibia. These trackers must be hard-fixed to the bone. The objectives of our study are to evaluate the technical problems and complications of these tracker-pins, the necessary time to fix them to the bone and the possible advantages of a new femoral-fixed tracker-pin.</p> <p>Methods</p> <p>Three hundred and sixty seven tracker-pins were used in one hundred and fifty one computer-assisted total knee replacements. A bicortical screw was used to fix the tracker to the tibia in all cases; in the femur, however, a bicortical tracker was used in 112 cases, while a new device (OrthoLock) with percutaneous fixation pins was employed in the remaining 39.</p> <p>Results</p> <p>Technical problems related to the fixing of the trackers appeared in nine cases (2.5%). The mean surgery time to fix the tracker pin to the tibia was 3 minutes (range 2–7), and 5 minutes in the case of the femoral pin (range: 4–11), although with the new tool it was only three minutes (range 2–4) (p < 0.001). No complications were observed with this new device.</p> <p>Conclusion</p> <p>The incidence of problems and complications with the fixing systems used in knee navigation is very small. The use of a new device with percutaneous pins facilitates the fixing of femoral trackers and decreases the time needed to place them.</p

    Estimating Acceleration and Lane-Changing Dynamics Based on NGSIM Trajectory Data

    Full text link
    The NGSIM trajectory data sets provide longitudinal and lateral positional information for all vehicles in certain spatiotemporal regions. Velocity and acceleration information cannot be extracted directly since the noise in the NGSIM positional information is greatly increased by the necessary numerical differentiations. We propose a smoothing algorithm for positions, velocities and accelerations that can also be applied near the boundaries. The smoothing time interval is estimated based on velocity time series and the variance of the processed acceleration time series. The velocity information obtained in this way is then applied to calculate the density function of the two-dimensional distribution of velocity and inverse distance, and the density of the distribution corresponding to the ``microscopic'' fundamental diagram. Furthermore, it is used to calculate the distributions of time gaps and times-to-collision, conditioned to several ranges of velocities and velocity differences. By simulating virtual stationary detectors we show that the probability for critical values of the times-to-collision is greatly underestimated when estimated from single-vehicle data of stationary detectors. Finally, we investigate the lane-changing process and formulate a quantitative criterion for the duration of lane changes that is based on the trajectory density in normalized coordinates. Remarkably, there is a very noisy but significant velocity advantage in favor of the targeted lane that decreases immediately before the change due to anticipatory accelerations

    Neutrophils in cancer: neutral no more

    Get PDF
    Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets

    A computed tomography based study on rotational alignment accuracy of the femoral component in total knee arthroplasty using computer-assisted orthopaedic surgery

    Get PDF
    Rotation of the femoral component in total knee arthroplasty (TKA) is of high importance in respect of the balancing of the knee and the patellofemoral joint. Though it is shown that computer assisted surgery (CAOS) improves the anteroposterior (AP) alignment in TKA, it is still unknown whether navigation helps in finding the accurate rotation or even improving rotation. Therefore the aim of our study was to evaluate the postoperative femoral component rotation on computed tomography (CT) with the intraoperative data of the navigation system. In 20 navigated TKAs the difference between the intraoperative stored rotation data of the femoral component and the postoperative rotation on CT was measured using the condylar twist angle (CTA). This is the angle between the epicondylar axis and the posterior condylar axis. Statistical analysis consisted of the intraclass correlation coefficient (ICC) and Bland-Altman plot. The mean intraoperative rotation CTA based on CAOS was 3.5° (range 2.4–8.6°). The postoperative CT scan showed a mean CTA of 4.0° (1.7–7.2). The ICC between the two observers was 0.81, and within observers this was 0.84 and 0.82, respectively. However, the ICC of the CAOS CTA versus the postoperative CT CTA was only 0.38. Though CAOS is being used for optimising the position of a TKA, this study shows that the (virtual) individual rotational position of the femoral component using a CAOS system is significantly different from the position on a postoperative CT scan

    The Synovial Sarcoma-Associated SYT-SSX2 Oncogene Antagonizes the Polycomb Complex Protein Bmi1

    Get PDF
    This study demonstrates deregulation of polycomb activity by the synovial sarcoma-associated SYT-SSX2 oncogene, also known as SS18-SSX2. Synovial sarcoma is a soft tissue cancer associated with a recurrent t(X:18) translocation event that generates one of two fusion proteins, SYT-SSX1 or SYT-SSX2. The role of the translocation products in this disease is poorly understood. We present evidence that the SYT-SSX2 fusion protein interacts with the polycomb repressive complex and modulates its gene silencing activity. SYT-SSX2 causes destabilization of the polycomb subunit Bmi1, resulting in impairment of polycomb-associated histone H2A ubiquitination and reactivation of polycomb target genes. Silencing by polycomb complexes plays a vital role in numerous physiological processes. In recent years, numerous reports have implicated gain of polycomb silencing function in several cancers. This study provides evidence that, in the appropriate context, expression of the SYT-SSX2 oncogene leads to loss of polycomb function. It challenges the notion that cancer is solely associated with an increase in polycomb function and suggests that any imbalance in polycomb activity could drive the cell toward oncogenesis. These findings provide a mechanism by which the SYT-SSX2 chimera may contribute to synovial sarcoma pathogenesis
    corecore