375 research outputs found
Differentiation Potential of Pancreatic Fibroblastoid Cells/Stellate Cells: Effects of Peroxisome Proliferator-Activated Receptor Gamma Ligands
Pancreatic stellate cells have been investigated mostly for their activation process, supposed to support the development of pancreatic disease. Few studies have been presented on reversal of the activation process in vitro. Thiazolidinediones (TZDs) have been used as antidiabetics and have now been reported to exert antifibrotic activity. We tested effects of natural and synthetic ligands of peroxisome proliferator-activated receptor gamma (PPARγ) on human pancreatic fibroblastoid cells (hPFCs) in search for specificity of action. Ciglitazone, as a prototype of TZDs, was shown to have reversible growth inhibitory effects on human pancreatic fibroblastoid cells/stellate cells. Cells treated with ciglitazone for three days showed enhanced lipid content and induction of proteins involved in lipid metabolism. Collagen synthesis was reduced in hPFC. Interaction of PPARγ with DNA binding sites upon ligand binding was shown by gel shift analysis. These findings point toward a potential for adipocyte differentiation in human pancreatic fibroblastoid cells
A realistic two-lane traffic model for highway traffic
A two-lane extension of a recently proposed cellular automaton model for
traffic flow is discussed. The analysis focuses on the reproduction of the lane
usage inversion and the density dependence of the number of lane changes. It is
shown that the single-lane dynamics can be extended to the two-lane case
without changing the basic properties of the model which are known to be in
good agreement with empirical single-vehicle data. Therefore it is possible to
reproduce various empirically observed two-lane phenomena, like the
synchronization of the lanes, without fine-tuning of the model parameters
300-times-increased diffusive skyrmion dynamics and effective pinning reduction by periodic field excitation
Thermally induced skyrmion dynamics, as well as skyrmion pinning effects, in
thin films have attracted significant interest. While pinning poses challenges
in deterministic skyrmion devices and slows down skyrmion diffusion, for
applications in non-conventional computing, both pinning of an appropriate
strength and skyrmion diffusion speed are key. Here, periodic field excitations
are employed to realize an increase of the skyrmion diffusion by more than two
orders of magnitude. Amplifying the excitation, a drastic reduction of the effec tive skyrmion pinning, is reported, and a transition from pinning-dominated dif fusive hopping to dynamics approaching free diffusion is observed. By tailoring
the field oscillation frequency and amplitude, a continuous tuning of the effec tive pinning and skyrmion dynamics is demonstrated, which is a key asset and
enabler for non-conventional computing applications. It is found that the peri odic excitations additionally allow stabilization of skyrmions at different sizes for
field values that are inaccessible in static systems, opening up new approaches
to ultrafast skyrmion motion by transiently exciting moving skyrmions
Estimating Acceleration and Lane-Changing Dynamics Based on NGSIM Trajectory Data
The NGSIM trajectory data sets provide longitudinal and lateral positional
information for all vehicles in certain spatiotemporal regions. Velocity and
acceleration information cannot be extracted directly since the noise in the
NGSIM positional information is greatly increased by the necessary numerical
differentiations. We propose a smoothing algorithm for positions, velocities
and accelerations that can also be applied near the boundaries. The smoothing
time interval is estimated based on velocity time series and the variance of
the processed acceleration time series. The velocity information obtained in
this way is then applied to calculate the density function of the
two-dimensional distribution of velocity and inverse distance, and the density
of the distribution corresponding to the ``microscopic'' fundamental diagram.
Furthermore, it is used to calculate the distributions of time gaps and
times-to-collision, conditioned to several ranges of velocities and velocity
differences. By simulating virtual stationary detectors we show that the
probability for critical values of the times-to-collision is greatly
underestimated when estimated from single-vehicle data of stationary detectors.
Finally, we investigate the lane-changing process and formulate a quantitative
criterion for the duration of lane changes that is based on the trajectory
density in normalized coordinates. Remarkably, there is a very noisy but
significant velocity advantage in favor of the targeted lane that decreases
immediately before the change due to anticipatory accelerations
Neutrophils in cancer: neutral no more
Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets
The chromodomain helicase Chd4 is required for Polycomb-mediated inhibition of astroglial differentiation
Polycomb group (PcG) proteins form transcriptional repressor complexes with well-established functions during cell-fate determination. Yet, the mechanisms underlying their regulation remain poorly understood. Here, we extend the role of Polycomb complexes in the temporal control of neural progenitor cell (NPC) commitment by demonstrating that the PcG protein Ezh2 is necessary to prevent the premature onset of gliogenesis. In addition, we identify the chromodomain helicase DNA-binding protein 4 (Chd4) as a critical interaction partner of Ezh2 required specifically for PcG-mediated suppression of the key astrogenic marker gene GFAP. Accordingly, in vivo depletion of Chd4 in the developing neocortex promotes astrogenesis. Collectively, these results demonstrate that PcG proteins operate in a highly dynamic, developmental stage-dependent fashion during neural differentiation and suggest that target gene-specific mechanisms regulate Polycomb function during sequential cell-fate decisions
EZH2 is a sensitive marker of malignancy in salivary gland tumors
BACKGROUND: The immunohistochemical detection of Enhancer of zeste homologue 2 (EZH2) proved to be a useful tool to recognize the malignant nature of tumors in a wide variety of neoplasms. The histological diagnostics of salivary gland tumors is a challenging task, and a reliable marker of malignancy would be extremely helpful. METHODS: EZH2 expression was investigated in 54 malignant and 40 benign salivary gland tumors of various histological types by standard immunohistochemistry. RESULTS: The majority (n = 52) of the malignant tumors stained positively, while all the investigated benign tumors were negative for EZH2. CONCLUSIONS: EZH2 expression in salivary gland tumors, similarly to the tumors of other organs is not characteristic for any tumor type, but is a solid marker of the malignant nature of the tumors
Induction of interleukin-8 preserves the angiogenic response in HIF-1 alpha-deficient colon cancer cells
authorHypoxia inducible factor-1 (HIF-1) is considered a crucial mediator of the cellular response to hypoxia through its regulation of genes that control angiogenesis^1, ^2, ^3, ^4. It represents an attractive therapeutic target^5, ^6 in colon cancer, one of the few tumor types that shows a clinical response to antiangiogenic therapy^7. But it is unclear whether inhibition of HIF-1 alone is sufficient to block tumor angiogenesis^8, ^9. In HIF-1_α knockdown DLD-1 colon cancer cells (DLD-1^HIF-kd), the hypoxic induction of vascular endothelial growth factor (VEGF) was only partially blocked. Xenografts remained highly vascularized with microvessel densities identical to DLD-1 tumors that had wild-type HIF-1_α (DLD-1^HIF-wt). In addition to the preserved expression of VEGF, the proangiogenic cytokine interleukin (IL)-8 was induced by hypoxia in DLD-1^HIF-kd but not DLD-1^HIF-wt cells. This induction was mediated by the production of hydrogen peroxide and subsequent activation of NF-_KB. Furthermore, the KRAS oncogene, which is commonly mutated in colon cancer, enhanced the hypoxic induction of IL-8. A neutralizing antibody to IL-8 substantially inhibited angiogenesis and tumor growth in DLD-1^HIF-kd but not DLD-1^HIF-wt xenografts, verifying the functional significance of this IL-8 response. Thus, compensatory pathways can be activated to preserve the tumor angiogenic response, and strategies that inhibit HIF-1α may be most effective when IL-8 is simultaneously targeted
Expression of BMI-1 and Mel-18 in breast tissue - a diagnostic marker in patients with breast cancer
<p>Abstract</p> <p>Background</p> <p>Polycomb Group (PcG) proteins are epigenetic silencers involved in maintaining cellular identity, and their deregulation can result in cancer. Expression of Mel-18 and Bmi-1 has been studied in tumor tissue, but not in adjacent non-cancerous breast epithelium. Our study compares the expression of the two genes in normal breast epithelium of cancer patients and relates it to the level of expression in the corresponding tumors as well as in breast epithelium of healthy women.</p> <p>Methods</p> <p>A total of 79 tumors, of which 71 malignant tumors of the breast, 6 fibroadenomas, and 2 DCIS were studied and compared to the reduction mammoplastic specimens of 11 healthy women. In addition there was available adjacent cancer free tissue for 23 of the malignant tumors. The tissue samples were stored in RNAlater, RNA was isolated to create expression microarray profile. These two genes were then studied more closely first on mRNA transcription level by microarrays (Agilent 44 K) and quantitative RT-PCR (TaqMan) and then on protein expression level using immunohistochemistry.</p> <p>Results</p> <p>Bmi-1 mRNA is significantly up-regulated in adjacent normal breast tissue in breast cancer patients compared to normal breast tissue from noncancerous patients. Conversely, mRNA transcription level of Mel-18 is lower in normal breast from patients operated for breast cancer compared to breast tissue from mammoplasty. When protein expression of these two genes was evaluated, we observed that most of the epithelial cells were positive for Bmi-1 in both groups of tissue samples, although the expression intensity was stronger in normal tissue from cancer patients compared to mammoplasty tissue samples. Protein expression of Mel-18 showed inversely stronger intensity in tissue samples from mammoplasty compared to normal breast tissue from patients operated for breast cancer.</p> <p>Conclusion</p> <p>Bmi-1 mRNA level is consistently increased and Mel-18 mRNA level is consistently decreased in adjacent normal breast tissue of cancer patients as compared to normal breast tissue in women having had reduction mammoplasties. Bmi-1/Mel-18 ratio can be potentially used as a tool for stratifying women at risk of developing malignancy.</p
- …