622 research outputs found

    Toric geometry and the dual of c-extremization

    Get PDF
    We consider D3-brane gauge theories at an arbitrary toric Calabi-Yau 3-fold cone singularity that are then further compactified on a Riemann surface ÎŁg, with an arbitrary partial topological twist for the global U(1) symmetries. This constitutes a rich, infinite class of two-dimensional (0, 2) theories. Under the assumption that such a theory flows to a SCFT, we show that the supergravity formulas for the central charge and R-charges of BPS baryonic operators of the dual AdS3 solution may be computed using only the toric data of the Calabi-Yau 3-fold and the topological twist parameters. We exemplify the procedure for both the Yp,q and Xp,q 3-fold singularities, along with their associated dual quiver gauge theories, showing that the new supergravity results perfectly match the field theory results obtained using c-extremization, for arbitrary twist over ÎŁg. We furthermore conjecture that the trial central charge Open image in new window , which we define in gravity, matches the field theory trial c-function off-shell, and show this holds in non-trivial examples. Finally, we check our general geometric formulae against a number of explicitly known supergravity solutions

    Supersymmetric spindles

    Get PDF
    In the context of holography, we analyse aspects of supersymmetric geometries based on two-dimensional orbifolds known as spindles. By analysing spinc spinors on a spindle with an azimuthal rotation symmetry we show that under rather general conditions there are just two possibilities, called the ‘twist’ and the ‘anti-twist’, which are determined by the quantized magnetic flux through the spindle. A special case of the twist is the standard topological twist which is associated with constant and chiral spinors. We construct solutions of D = 5 and D = 4 STU gauged supergravity theories that are dual to D3-branes and M2-branes wrapping spindles, respectively, which realize both the anti-twist, as seen before, but also the twist. For the wrapped D3-brane solutions we reproduce the central charge of the gravity solution from the dual field theory by analysing the anomaly polynomial of N = 4 SYM theory. We also discuss M5-branes wrapped on spindles both from a gravity and a field theory point of view

    Efficacy of High Dose Vitamin D Supplements for Elite Athletes.

    Get PDF
    PURPOSE: Supplementation with dietary forms of vitamin D is commonplace in clinical medicine, elite athletic cohorts and the general population, yet the response of all major vitamin D metabolites to high doses of vitamin D is poorly characterized. We aimed to identify the responses of all major vitamin D metabolites to moderate and high dose supplemental vitamin D3. METHODS: A repeated measures design was implemented in which 46 elite professional European athletes were block randomized based on their basal 25[OH]D concentration into two treatment groups. Athletes received either 35,000 or 70,000 IU.week vitamin D3 for 12 weeks and 42 athletes completed the trial. Blood samples were collected over 18 weeks to monitor the response to supplementation and withdrawal from supplementation. RESULTS: Both doses led to significant increases in serum 25[OH]D and 1,25[OH]2D3. 70,000 IU.week also resulted in a significant increase of the metabolite 24,25[OH]2D at weeks 6 and 12 that persisted following supplementation withdrawal at week 18, despite a marked decrease in 1,25[OH]2D3. Intact PTH was decreased in both groups by week 6 and remained suppressed throughout the trial. CONCLUSIONS: High dose vitamin D3 supplementation (70,000 IU.week) may be detrimental for its intended purposes due to increased 24,25[OH]2D production. Rapid withdrawal from high dose supplementation may inhibit the bioactivity of 1,25[OH]2D3 as a consequence of sustained increases in 24,25[OH]2D that persist as 25[OH]D and 1,25[OH]2D concentrations decrease. These data imply that lower doses of vitamin D3 ingested frequently may be most appropriate and gradual withdrawal from supplementation as opposed to rapid withdrawal may be favorable

    Thermodynamics of accelerating and supersymmetric AdS(4) black holes

    Get PDF
    We study the thermodynamics of AdS 4 black hole solutions of Einstein-Maxwell theory that are accelerating, rotating, and carry electric and magnetic charges. We focus on the class for which the black hole horizon is a spindle and can be uplifted on regular Sasaki-Einstein spaces to give solutions of D = 11 supergravity that are free from conical singularities. We use holography to calculate the Euclidean on-shell action and to define a set of conserved charges which give rise to a first law. We identify a complex locus of supersymmetric and nonextremal solutions, defined through an analytic continuation of the parameters, upon which we obtain a simple expression for the on-shell action. A Legendre transform of this action combined with a reality constraint then leads to the Bekenstein-Hawking entropy for the class of supersymmetric and extremal black holes

    Accelerating black holes and spinning spindles

    Get PDF
    We study solutions in the PlebaƄski–DemiaƄski family which describe an accelerating, rotating, and dyonically charged black hole in AdS 4 . These are solutions of D = 4 Einstein-Maxwell theory with a negative cosmological constant and hence minimal D = 4 gauged supergravity. It is well known that when the acceleration is nonvanishing the D = 4 black hole metrics have conical singularities. By uplifting the solutions to D = 11 supergravity using a regular Sasaki-Einstein seven-manifold, S E 7 , we show how the free parameters can be chosen to eliminate the conical singularities. Topologically, the D = 11 solutions incorporate an S E 7 fibration over a two-dimensional weighted projective space, W C P 1 [ n − , n + ] , also known as a spindle, which is labeled by two integers that determine the conical singularities of the D = 4 metrics. We also discuss the supersymmetric and extremal limit and show that the near horizon limit gives rise to a new family of regular supersymmetric AdS 2 × Y 9 solutions of D = 11 supergravity, which generalize a known family by the addition of a rotation parameter. We calculate the entropy of these black holes and argue that it should be possible to derive this from certain N = 2 , d = 3 quiver gauge theories compactified on a spinning spindle with the appropriate magnetic flux

    An Assessment of the Validity of the Remote Food Photography Method (Termed Snap-N-Send) in Experienced and Inexperienced Sport Nutritionists

    Get PDF
    The remote food photography method, often referred to as “Snap-N-Send” by sport nutritionists, has been reported as a valid method to assess energy intake in athletic populations. However, preliminary studies were not conducted in true free-living conditions, and dietary assessment was performed by one researcher only. The authors, therefore, assessed the validity of Snap-N-Send to assess the energy and macronutrient composition in experienced (EXP, n = 23) and inexperienced (INEXP, n = 25) sport nutritionists. The participants analyzed 2 days of dietary photographs, comprising eight meals. Day 1 consisted of “simple” meals based around easily distinguishable foods (i.e., chicken breast and rice), and Day 2 consisted of “complex” meals, containing “hidden” ingredients (i.e., chicken curry). The estimates of dietary intake were analyzed for validity using one-sample t tests and typical error of estimates (TEE). The INEXP and EXP nutritionists underestimated energy intake for the simple day (mean difference [MD] = −1.5 MJ, TEE = 10.1%; −1.2 MJ, TEE = 9.3%, respectively) and the complex day (MD = −1.2 MJ, TEE = 17.8%; MD = −0.6 MJ, 14.3%, respectively). Carbohydrate intake was underestimated by INEXP (MD = −65.5 g/day, TEE = 10.8% and MD = −28.7 g/day, TEE = 24.4%) and EXP (MD = −53.4 g/day, TEE = 10.1% and −19.9 g/day, TEE = 17.5%) for both the simple and complex days, respectively. Interpractitioner reliability was generally “poor” for energy and macronutrients. The data demonstrate that the remote food photography method/Snap-N-Send underestimates energy intake in simple and complex meals, and these errors are evident in the EXP and INEXP sport nutritionists

    A Microsoft HoloLens Mixed Reality Surgical Simulator for Patient-Specific Hip Arthroplasty Training

    Get PDF
    Surgical simulation can offer novice surgeons an opportunity to practice skills outside the operating theatre in a safe controlled environment. According to literature evidence, nowadays there are very few training simulators available for Hip Arthroplasty (HA). In a previous study we have presented a physical simulator based on a lower torso phantom including a patient-specific hemi-pelvis replica embedded in a soft synthetic foam. This work explores the use of Microsoft HoloLens technology to enrich the physical patient-specific simulation with the implementation of wearable mixed reality functionalities. Our HA multimodal simulator based on mixed reality using the HoloLens is described by illustrating the overall system, and by summarizing the main phases of the design and development. Finally, we present a preliminary qualitative study with seven subjects (5 medical students, and 2 orthopedic surgeons) showing encouraging results that suggest the suitability of the HoloLens for the proposed application. However, further studies need to be conducted to perform a quantitative test of the registration accuracy of the virtual content, and to confirm qualitative results in a larger cohort of subjects

    Instantons and Killing spinors

    Get PDF
    We investigate instantons on manifolds with Killing spinors and their cones. Examples of manifolds with Killing spinors include nearly Kaehler 6-manifolds, nearly parallel G_2-manifolds in dimension 7, Sasaki-Einstein manifolds, and 3-Sasakian manifolds. We construct a connection on the tangent bundle over these manifolds which solves the instanton equation, and also show that the instanton equation implies the Yang-Mills equation, despite the presence of torsion. We then construct instantons on the cones over these manifolds, and lift them to solutions of heterotic supergravity. Amongst our solutions are new instantons on even-dimensional Euclidean spaces, as well as the well-known BPST, quaternionic and octonionic instantons.Comment: 40 pages, 2 figures v2: author email addresses and affiliations adde

    Gravity duals of supersymmetric gauge theories on three-manifolds

    Get PDF
    We study gravity duals to a broad class of N=2 supersymmetric gauge theories defined on a general class of three-manifold geometries. The gravity backgrounds are based on Euclidean self-dual solutions to four-dimensional gauged supergravity. As well as constructing new examples, we prove in general that for solutions defined on the four-ball the gravitational free energy depends only on the supersymmetric Killing vector, finding a simple closed formula when the solution has U(1) x U(1) symmetry. Our result agrees with the large N limit of the free energy of the dual gauge theory, computed using localization. This constitutes an exact check of the gauge/gravity correspondence for a very broad class of gauge theories with a large N limit, defined on a general class of background three-manifold geometries.Comment: 74 pages, 2 figures; v2: minor change

    Baryonic symmetries and M5 branes in the AdS_4/CFT_3 correspondence

    Full text link
    We study U(1) symmetries dual to Betti multiplets in the AdS_4/CFT_3 correspondence for M2 branes at Calabi-Yau four-fold singularities. Analysis of the boundary conditions for vector fields in AdS_4 allows for a choice where wrapped M5 brane states carrying non-zero charge under such symmetries can be considered. We begin by focusing on isolated toric singularities without vanishing six-cycles, and study in detail the cone over Q^{111}. The boundary conditions considered are dual to a CFT where the gauge group is U(1)^2 x SU(N)^4. We find agreement between the spectrum of gauge-invariant baryonic-type operators in this theory and wrapped M5 brane states. Moreover, the physics of vacua in which these symmetries are spontaneously broken precisely matches a dual gravity analysis involving resolutions of the singularity, where we are able to match condensates of the baryonic operators, Goldstone bosons and global strings. We also argue more generally that theories where the resolutions have six-cycles are expected to receive non-perturbative corrections from M5 brane instantons. We give a general formula relating the instanton action to normalizable harmonic two-forms, and compute it explicitly for the Q^{222} example. The holographic interpretation of such instantons is currently unclear.Comment: 92 pages, 10 figure
    • 

    corecore