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cone singularity that are then further compactified on a Riemann surface Σg, with an arbi-

trary partial topological twist for the global U(1) symmetries. This constitutes a rich, infi-

nite class of two-dimensional (0, 2) theories. Under the assumption that such a theory flows

to a SCFT, we show that the supergravity formulas for the central charge and R-charges

of BPS baryonic operators of the dual AdS3 solution may be computed using only the

toric data of the Calabi-Yau 3-fold and the topological twist parameters. We exemplify the

procedure for both the Y p,q and Xp,q 3-fold singularities, along with their associated dual

quiver gauge theories, showing that the new supergravity results perfectly match the field

theory results obtained using c-extremization, for arbitrary twist over Σg. We furthermore

conjecture that the trial central charge Z , which we define in gravity, matches the field the-

ory trial c-function off-shell, and show this holds in non-trivial examples. Finally, we check
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1 Introduction and summary

A beautiful feature of SCFTs in d = 2 spacetime dimensions which preserve (0, 2) supersym-

metry is that the right moving central charge, cR, can be determined by c-extremization [1,

2]. One first constructs a trial R-symmetry current and an associated trial central charge,

proportional to the ’t Hooft anomaly for the current, and then extremizes over the space

of possible R-symmetries. Generically, this procedure identifies the exact R-symmetry and

hence the exact cR.

In a recent paper [3] a precise geometric realization of c-extremization was formulated

for the class of such SCFTs that have a holographic dual in type IIB supergravity of

the form AdS3 × Y7 with non-vanishing five-form flux only [4, 5]. In order to set up the

geometric version of c-extremization it is necessary to take these supergravity solutions

off-shell. This was achieved in [3] by focusing on “supersymmetric geometries” in which
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one imposes the conditions for supersymmetry, i.e. the existence of Killing spinors, but

relaxes the equation of motion of the five-form. The metric on Y7 for these supersymmetric

geometries necessarily has a unit norm Killing vector, ξ, the “R-symmetry vector field”,

which, on-shell, is dual to the R-symmetry of the field theory. This Killing vector defines

a foliation on Y7, and there is an associated six-dimensional transverse Kähler metric,

satisfying a non-linear PDE and with positive Ricci scalar, which then determines the full

D = 10 metric and the five-form flux. An important feature of the off-shell supersymmetric

geometries is that the eight-dimensional real cone, C(Y7), over Y7 is a complex cone with

a non-vanishing holomorphic (4, 0)-form.

To set up c-extremization it was also necessary to impose an additional integral con-

straint on the supersymmetric geometries, whose precise form we will recall later. The

significance of this constraint, which is implied by the five-form equation of motion, is that

it provides a sufficient condition in order to be able to consistently impose flux quantization

of the five-form. Focusing on this class of supersymmetric geometries, the c-extremization

begins with a complex cone C(Y7), with a holomorphic (4, 0)-form, and a holomorphic

U(1)s action. By then choosing a trial R-symmetry holomorphic vector field ξ together

with a transverse Kähler metric, with Kähler form J , one obtains a supersymmetric geom-

etry. Imposing the integral constraint then allows one to impose flux quantization. A trial

central charge, Z , can be defined via

Z ≡
3L8

(2π)6g2sℓ
8
s

SSUSY(ξ; [J ]) , (1.1)

where SSUSY is a supersymmetric action that, importantly, only depends on ξ and the basic

cohomology class of J . Here L is a length scale which is fixed by flux quantization, and ℓs,

gs are the string length and coupling constant, respectively. An on-shell supersymmetric

geometry then extremizes Z , and we get Z |on−shell = csugra, where csugra is the central

charge1 computed from the supergravity solution, provided it exists, thus completing the

identification of a geometric version of c-extremization.

In [3] this formalism was explored in some detail for the special class of examples

in which Y7 = T 2 × Y5. In particular, Y5 is trivially fibred over the T 2. Here we will

generalize this both by replacing T 2 with an arbitrary Riemann surface, Σg of genus g and

also allowing Y5 to be non-trivially fibred over Σg:

Y5 →֒ Y7 → Σg . (1.2)

From a physical point of view this class of AdS3 × Y7 solutions can arise as follows. If we

start with D3-branes sitting at the apex of a Calabi-Yau 3-fold cone singularity, we obtain

an AdS5×Y5 solution of type IIB supergravity with a Sasaki-Einstein metric on Y5. In the

case that Y5 is toric we can extract the dual quiver gauge theory. There is a vast literature

on this topic, and a variety of approaches, but e.g. for a recent review on the brane tilings

approach, see [6]. Suppose we then compactify this quiver gauge theory on a Riemann

1In the context of holographic theories we will simply refer to “the central charge”, when we actually

mean cR, since the left and right central charges are equal at leading order at large N .
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surface Σg with a “twist”, i.e. also switching on background gauge fields associated with the

R-symmetry and other global symmetries, both flavour and baryonic. In fact, generically

(i.e. for g 6= 1), it is essential that we switch on some background fields for the R-symmetry,

often called a “topological twist”, in order to preserve (0, 2) supersymmetry. These are the

field theories of primary interest in this paper.2 An alternative point of view is to consider

D3-branes wrapping a Riemann surface Σg inside a Calabi-Yau 4-fold.

Assuming that such an AdS3 × Y7 solution actually exists (i.e. there are no obstruc-

tions), we will show that the trial central charge in (1.1) can be calculated from a remark-

ably simple master volume function that depends on the toric data of Y5. We will give

the explicit expression below, after first introducing the ingredients that enter the formula,

most of which are well-known in the context of toric Sasakian geometry.

We start with a toric, Kähler cone over Y5, C(Y5), that is assumed to be Gorenstein, i.e.

have a non-vanishing holomorphic (3, 0)-form. Recall that the Kähler cone metric gives rise

to a Sasakian metric on Y5. Being toric, there are three holomorphic Killing vectors, and the

moment maps for the U(1)3 action on C(Y5) lead to a polyhedral cone, C, with d ≥ 3 facets

which have inward normal vectors ~va,∈ Z3, a = 1, . . . , d. A Kähler cone metric also specifies

a Reeb vector bi, i = 1, 2, 3, which lies inside the so-called Reeb cone in C∗. Since the Kähler

cone is Gorenstein there is a basis in which ~va = (1, ~wa), with ~wa ∈ Z2, and this singles

out the b1 component. In particular, a Sasaki-Einstein metric on Y5, must have b1 = 3 [7].

The choice of the Reeb vector ~b = (b1, b2, b3) is associated with a contact one-form, η,

for the Sasakian metric on Y5. Furthermore we have [dη] = [ρ]/b1 = 2[ω], where ρ and ω

are the transverse Ricci-form and Kähler form for the Sasakian metric, respectively, and

the cohomology classes refer to the basic cohomology associated with the foliation specified

by the Reeb vector. For our purposes, we are interested in fixing a Reeb vector ~b on the

complex cone C(Y5), maintaining [dη] = [ρ]/b1, but we want to vary the transverse Kähler

class [ω]. As we will recall later, the Kähler class is conveniently specified by d parameters

λa ∈ R, of which d − 2 give rise to independent Kähler class parameters. The polytope

associated with the Kähler cone metric with the given Reeb vector has λa = − 1
2b1

for all

a = 1, . . . , d. By varying λa away from these values, we obtain a new polytope, and we can

use this to obtain the following simple master volume formula:

V(~b; {λa}) ≡

∫

Y5

η ∧
1

2!
ω2 , (1.3)

=
(2π)3

2

d
∑

a=1

λa
λa−1(~va, ~va+1,~b)− λa(~va−1, ~va+1,~b) + λa+1(~va−1, ~va,~b)

(~va−1, ~va,~b)(~va, ~va+1,~b)
.

Despite appearances, this expression only depends on d − 2 of the λa. In the special case

that we set λa = − 1
2b1

for all a = 1, . . . , d, we obtain the formula for the volume of a toric

Sasakian metric for a given Reeb vector of [7]. If we further set b1 = 3 and extremize over

b2, b3, we obtain the Reeb vector and the volume for a Sasaki-Einstein metric [7].

2Note, however, that such field theories might not flow to a SCFT in the IR, and examples for the g = 1

case were discussed in [3]. In addition, examples of AdS3 × Y7 supergravity solutions were discussed in [3],

again for g = 1, for which it is unclear how to identify the parent four-dimensional theory. We shall discuss

this again in section 7.
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Since C(Y5) is toric, there is a U(1)3 action on Y5 and the fibration for Y7 in (1.2) is

specified by three integers ni. In order to ensure that the cone over Y7, C(Y7), has a holo-

morphic (4, 0)-form, as required for a supersymmetric geometry, there is a corresponding

restriction on the ni. In a basis for the U(1)s in which the holomorphic (3, 0)-form on the

cone over Y5, C(Y5), has charge 1 under the first U(1) and is uncharged under the second

and third, this restriction is simply that n1 = 2(1− g).

Remarkably, the volume formula (1.3) now allows us to easily calculate the central

charge of the SCFT dual to the AdS3 × Y7 solution, with Y7 fibred as in (1.2) (assuming

this solution exists). In all of the formulae below we need to set b1 = 2, after taking

derivatives. The off-shell supersymmetric action appearing in the trial central charge, Z

in (1.1), is given by

SSUSY(~b; {λa};A) = −A
d

∑

a=1

∂V

∂λa
− 4π

3
∑

i=1

ni
∂V

∂bi
, (1.4)

where the ni are the integers determining the fibration of Y5 over Σg with n1 = 2(1 − g),

and A is a parameter that fixes the Kähler class of Σg. The integral constraint that needs

to be imposed on the supersymmetric geometries takes the simple form

0 = A

d
∑

a,b=1

∂2V

∂λa∂λb
− 2πn1

d
∑

a=1

∂V

∂λa
+ 4π

d
∑

a=1

3
∑

i=1

ni
∂2V

∂λa∂bi
. (1.5)

There are two types of five-cycle to consider in imposing flux quantization of the five-form.

Flux quantization over the fibre Y5 at a fixed point on Σg reads

2(2πℓs)
4gs

L4
N = −

d
∑

a=1

∂V

∂λa
, (1.6)

where N ∈ Z and can be interpreted as the number of D3-branes that are wrapping Σg.

There are also flux quantization conditions over the toric three-cycles Sa to be imposed,

which read

2(2πℓs)
4gs

L4
Ma =

1

2π
A

d
∑

b=1

∂2V

∂λa∂λb
+ 2

3
∑

i=1

ni
∂2V

∂λa∂bi
, (1.7)

with Ma ∈ Z. The geometric dual of c-extremization for this fibred class of Y7 then boils

down to extremizing the supersymmetric action SSUSY, subject to the conditions (1.5)–

(1.7), as well as setting b1 = 2. From there one uses (1.1) to obtain the central charge

Z |on−shell = csugra. We will also show how the master volume formula can be used to

calculate the R-charges of a class of baryonic operators in the dual field theory, arising

from D3-branes wrapping certain calibrated three-cycles in Y7.

The plan of the rest of the paper is as follows. In section 2 we summarize the geometric

formulation of c-extremization for AdS3 × Y7 solutions of [3], for general Y7. In section 3

we derive the master volume formula (1.3) for Y5 whose cone C(Y5) is toric and Kähler. In

section 4 we consider AdS3 × Y7 solutions with Y7 fibred as in (1.2). We show that all the

ingredients for the geometric dual of c-extremization can be derived from the master volume
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formula, summarising the main results in section 4.3. In section 4.4 we briefly discuss the

fact that these gravity calculations are valid provided the AdS3×Y7 solution actually exists

(i.e. there are no obstructions). We then turn to some examples. Section 5 illustrates the

formalism for Y7 associated with the so-called universal twist, where the fibration of Y5
over Σg is only in the direction of the R-symmetry of the Sasaki-Einstein metric on Y5.

Section 6 studies the examples for Y5 whose complex cones are given by the Y p,q and

Xp,q 3-fold singularities. These include Y 2,1 and X2,1, which are the canonical complex

cones over the first and second del Pezzo surfaces, dP1, dP2, respectively. The spectacular

matching between gravity and field theory calculations that we find is, a priori, a formal

matching: in general it assumes the supergravity solution exists, and correspondingly the

field theory results using c-extremization are valid provided the theory flows to the putative

SCFT in the IR. In section 7 we compare our results with two known classes of explicit

supergravity solutions. We conclude with some discussion in section 8.

2 Geometric dual of c-extremization

We are interested in supersymmetric AdS3 solutions of type IIB supergravity that are

dual to SCFTs with (0, 2) supersymmetry, with the ten-dimensional metric and Ramond-

Ramond self-dual five-form F5 taking the form

ds210 = L2e−B/2
(

ds2AdS3 + ds27
)

,

F5 = −L4 (volAdS3 ∧ F + ∗7F ) . (2.1)

Here L is an overall dimensionful length scale, with ds2AdS3
being the metric on a unit

radius AdS3 with corresponding volume form volAdS3 . The warp factor B is a function on

the smooth, compact Riemannian internal space (Y7, ds
2
7) and F is a closed two-form on

Y7 with Hodge dual ∗7F . In order to define a consistent string theory background we must

impose the flux quantization condition

1

(2πℓs)4gs

∫

ΣA

F5 = NA ∈ Z . (2.2)

Here ℓs is the dimensionful string length, gs is the constant string coupling, and ΣA ⊂ Y7,

with {ΣA} forming an integral basis for the free part of H5(Y7,Z).

The geometric set-up for c-extremization in [3] requires that we take these supersym-

metric solutions off-shell. This is achieved by first focusing on supersymmetric geometries,

for which we demand that the ansatz (2.1) still admits the same number of Killing spinors.

An on-shell supersymmetric solution is then obtained by further imposing the five-form

equation of motion. The supersymmetric geometries have a unit norm Killing vector ξ,

called the R-symmetry vector field, which defines a foliation Fξ of Y7. In local coordinates

we write ξ = 2∂z, and the metric takes the form

ds27 =
1

4
(dz + P )2 + eBds2 , (2.3)
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where ds2 is a Kähler metric, transverse to the foliation Fξ. The local one-form P is the

Ricci one-form of the transverse Kähler metric, so that dP = ρ is the Ricci two-form. The

one-form, η, dual to ξ, therefore satisfies

η ≡
1

2
(dz + P ) , dη =

1

2
ρ . (2.4)

The function B in (2.3) is fixed via eB = R/8, where R is the Ricci scalar of the transverse

Kähler metric, and we hence demand that R > 0. Finally, the closed two-form is given by

F = −2J + d
(

e−Bη
)

, (2.5)

where J is the transverse Kähler form. If the orbits of ξ are all closed circles then Y7 is called

quasi-regular and in the subcase when the circle action is free it is called regular. In these

cases Y7 is the total space of a circle bundle over a six-dimensional compact Kähler orbifold

or manifold, respectively. If the action of ξ has a non-closed orbit Y7 is said to be irregular.

These supersymmetric geometries also solve the five-form equation of motion, and

hence become supersymmetric on-shell solutions to type IIB supergravity, provided in

addition we impose the PDE

�R =
1

2
R2 −RijR

ij . (2.6)

Here Rij denotes the transverse Ricci tensor, and everything in (2.6) is computed using

the transverse Kähler metric. We note that the overall scale of the Kähler form J can be

absorbed into the length scale L in the full AdS3 solution (2.1).

An important feature of these supersymmetric geometries is that the real cone over

Y7 is a complex cone. More precisely we define the 8-dimensional cone C(Y7) ≡ R>0 × Y7,

equipped with the conical metric

ds28 = dr2 + r2ds27 . (2.7)

While there is no natural Kähler structure, or even symplectic structure, on C(Y7), there is

a nowhere-zero holomorphic (4, 0)-form, Ψ, which is closed dΨ = 0, and carries R-symmetry

charge two:

LξΨ = 2iΨ . (2.8)

In particular, ξ is a holomorphic vector field.

Putting these supersymmetric geometries on-shell implies that the action SSUSY is

extremized, where

SSUSY(ξ; [J ]) =

∫

Y7

η ∧ ρ ∧
1

2!
J2 . (2.9)

It can be shown that for supersymmetric geometries, this is necessarily positive: SSUSY > 0.

The action (2.9) clearly depends on the choice of R-symmetry vector field ξ. While it also

appears to depend on both ρ and J , it is not difficult to show that this dependence is only

via the basic cohomology classes [ρ], [J ] ∈ H1,1
B (Fξ). Since for fixed complex structure on

the cone the transverse foliation Fξ determines the class [ρ], we conclude that SSUSY then

only depends on ξ and [J ].

– 6 –
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We also need to impose flux quantization. To do this, we impose the following addi-

tional integral constraint on the supersymmetric geometries:
∫

Y7

η ∧ ρ2 ∧ J = 0 . (2.10)

This is equivalent to the integral of (2.6) over Y7 holding, which in turn is equivalent to

imposing an integrated version of the five-form equation of motion. The constraint (2.10)

also only depends on the choice of vector field ξ and the basic Kähler class [J ]. Fur-

thermore, it was shown in [3] that provided we also assume the topological condition

H2(Y7,R) ∼= H2
B(Fξ)/[ρ], then (2.10) is sufficient for consistently imposing flux quantiza-

tion. In particular this topological condition holds for the fibred geometries (1.2) that we

consider in the remainder of the paper, where the fibres Y5 are toric. Specifically, this con-

dition implies that provided we use representative five-cycles, ΣA, on Y7 that are tangent

to ξ, then we can impose

∫

ΣA

η ∧ ρ ∧ J =
2(2πℓs)

4gs
L4

NA . (2.11)

In particular, restricting to such cycles, the left hand side only depends on the homology

class of ΣA, as well as ξ and [J ].

We can now summarize the geometric version of c-extremization. We fix a complex

cone C(Y7) with holomorphic volume form Ψ, and holomorphic U(1)s action. A general

choice of trial R-symmetry vector may be written as

ξ =
s

∑

i=1

bi∂ϕi
, (2.12)

where ∂ϕi
, i = 1, . . . , s ≥ 1, are real holomorphic vector fields generating the U(1)s action

on C(Y7). For convenience, we choose this basis so that the holomorphic volume form

has unit charge under ∂ϕ1 , but is uncharged under ∂ϕi
, i = 2, . . . , s, and hence (2.8) fixes

b1 = 2. For a particular choice of ξ, and hence foliation Fξ, we then choose a transverse

Kähler metric with basic class [J ] ∈ H1,1
B (Fξ). We impose the constraint (2.10), as well

as the flux quantization conditions (2.11). We then go on-shell by extremizing SSUSY over

the choice of ξ and [J ] that satisfy the constraints. Equivalently, we extremize the “trial

central charge”, Z , defined by

Z ≡
3L8

(2π)6g2sℓ
8
s

SSUSY , (2.13)

which has the property that for an on-shell supersymmetric solution, i.e. after extremiza-

tion, we obtain the central charge of the dual SCFT:

Z |on−shell = csugra . (2.14)

An important point to emphasize is that this procedure leads to the central charge asso-

ciated with a supersymmetric AdS3 × Y7 solution, provided that such a supersymmetric

solution actually exists. We shall discuss this further in section 4.4, and also in section 8.

– 7 –



J
H
E
P
0
1
(
2
0
1
9
)
2
0
4

To conclude this section, we note that all known supersymmetric solutions with prop-

erly quantized five-form flux are in the regular or quasi-regular class. We expect that this

is true in general and we will also return to this point in section 8.

3 Toric geometry and the master volume

As explained in the introduction, in this paper we are interested in Y7 which are fibred

over a Riemann surface Σg, so that

Y5 →֒ Y7 → Σg . (3.1)

In this section we focus on the induced geometry of the fibres Y5, where the R-symmetry

vector ξ is tangent to Y5. The aim is to study the volume function

V ≡

∫

Y5

η ∧
1

2!
ω2 . (3.2)

Here in a slight abuse of notation η is the restriction of (2.4) to a fibre, so that as in

the previous section ξyη = 1, ξydη = 0. Moreover ω is a transverse Kähler form for the

foliation Fξ induced by ξ on Y5. The cone C(Y5) = R>0 × Y5 is a complex manifold,

and again as in section 2 for fixed complex structure V = V(ξ; [ω]) depends only on the

R-symmetry vector ξ and the transverse Kähler class [ω] ∈ H2
B(Fξ). In this section3 we

shall take C(Y5) to be toric, and derive a completely explicit formula for V in terms of toric

data, namely (1.3). We call this the “master volume”, because as we shall see in section 4,

remarkably everything that we need to compute to determine the supergravity formulas

for the central charge and R-charges of BPS baryonic operators may be obtained from V .

3.1 Toric Kähler cones

Our starting point is to begin with a toric Kähler cone in complex dimension n = 3, as first

studied in [7]. By definition these are Kähler metrics in real dimension 6 of the conical form

ds2C(Y5)
= dr2 + r2ds25 , (3.3)

which are invariant under a U(1)3 isometry. Introducing generators ∂ϕi
, i = 1, 2, 3, for

each U(1) action, where ϕi has period 2π, we also write

ξ =
3

∑

i=1

bi∂ϕi
. (3.4)

The vector ~b = (b1, b2, b3) parametrizes the choice of R-symmetry vector ξ.

The complex structure pairs ξ with the radial vector r∂r, and likewise pairs the dual

one-form η with dr/r. In particular for Kähler cones

dη = 2ωSasakian , (3.5)

3In later sections we shall also discuss non-convex toric cones, introduced in [3].
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where ωSasakian is the transverse Kähler form. Because dη is also a transverse symplectic

form in this case, by definition η is a contact one-form on Y5. The unique vector field ξ

satisfying ξyη = 1, ξydη = 0 is then also called the Reeb vector field. We may write the

metric on Y5 as

ds25 = η2 + ds24(ω) , (3.6)

where ds24(ω) is the transverse Kähler metric with Kähler form ω = ωSasakian. Moreover,

we can define the moment map coordinates

yi ≡
1

2
r2∂ϕi

yη , i = 1, 2, 3 . (3.7)

These span the so-called moment map polyhedral cone C ⊂ R3, where ~y = (y1, y2, y3) are

standard coordinates on R3. The polyhedral cone C, which is convex, may be written as

C = {~y ∈ R3 | (~y,~va) ≥ 0 , a = 1, . . . , d} , (3.8)

where ~va ∈ Z3 are the inward pointing primitive normals to the facets, and the index

a = 1, . . . , d ≥ 3 labels the facets. Geometrically, Cint×U(1)3 is a dense open subset of the

Kähler cone, where Cint denotes the interior of C, with the normal vectors ~va ∈ Z3 to each

bounding facet in ∂C specifying which U(1) ⊂ U(1)3 collapses along that facet.

An alternative presentation is

C =

{

∑

α

tα~uα | tα ≥ 0

}

, (3.9)

where ~uα ∈ Z3 are the outward pointing vectors along each edge of C. Since for three-

dimensional cones an edge arises as the intersection of two adjacent facets, we may order

the facets cyclically around the polyhedral cone, identifying ~vd+1 ≡ ~v1, ~v0 ≡ ~vd, and then

note that we may identify the α index, labelling edges, with the a index, labelling facets.

Specifically,

~ua = ~va−1 ∧ ~va , (3.10)

where ∧ denotes the usual vector cross product in R3. Complex cones C(Y5) admitting a

global holomorphic (3, 0)-form are called Gorenstein, and in this case there exists a basis

in which ~va = (1, ~wa), for ~wa ∈ Z2. Here the holomorphic (3, 0)-form Ω(3,0) has unit charge

under ∂ϕ1 , and is uncharged under ∂ϕ2 , ∂ϕ3 [7]. We will henceforth always use such a basis,

where we notice that the b1 component of the R-symmetry vector ξ in (3.4) is singled out,

since LξΩ(3,0) = ib1Ω(3,0).

As shown in [7], for a Kähler cone metric the R-symmetry vector ~b = (b1, b2, b3)

necessarily lies in the interior of the Reeb cone, ~b ∈ C∗

int. Here the Reeb cone C∗ is by

definition the dual cone to C. In particular ~b ∈ C∗

int is equivalent to (~b, ~ua) > 0 for all

a = 1, . . . , d. The Sasakian five-manifold Y5 is embedded at {r = 1}. Using ξyη = 1,

together with (3.4) and (3.7), the image of Y5 under the moment map is hence the compact

convex two-dimensional polytope

P = P (~b) ≡ C ∩H(~b) , (3.11)
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where the Reeb hyperplane is by definition

H = H(~b) ≡

{

~y ∈ R3 | (~y,~b) =
1

2

}

. (3.12)

We will refer to the polytope P in (3.11) as the Sasakian polytope. It sits in the Reeb

hyperplane H(~b), which has normal vector ~b. Notice that the d vertices of the Sasakian

polytope P are located at

~ya = ~ya(~b) ≡
~ua

2(~ua,~b)
. (3.13)

This follows since a vertex is the intersection of the edge {t ~ua | t ≥ 0} with the Reeb

hyperplane H.

The main object of interest in [7] was the volume of the Sasakian manifold Y5. By

definition this is

Vol ≡

∫

Y5

η ∧
1

2!
ω2
Sasakian , (3.14)

where recall that the transverse Kähler form ωSasakian is given by (3.5). In the following Vol

in (3.14) will always refer to the Sasakian volume. For Gorenstein Kähler cones in fact [8]

[dη] = 2[ωSasakian] =
1

b1
[ρ] ∈ H2

B(Fξ) . (3.15)

In particular [ρ] = 2πcB1 , with cB1 being the basic first Chern class of the foliation. This

depends only on the complex structure of the cone and the choice of Reeb vector. The factor

of b1 arises since by definition the holomorphic (3, 0)-form Ω(3,0) has charge b1 under the

R-symmetry vector ξ, so LξΩ(3,0) = ib1Ω(3,0), as discussed above. Thus we may also write

Vol =
1

8b21

∫

Y5

η ∧ ρ2 . (3.16)

One of the main results of [7] is that the Reeb vector ξ for a Sasaki-Einstein metric on

Y5 is the unique minimum of Vol = Vol(~b), subject to the constraint b1 = 3. Our master

volume (3.2) is a generalization of the Sasakian volume function, in which we allow for a

general transverse Kähler class [ω], rather than (3.15). In the remainder of this section we

derive an equivalent formula for the Sasakian volume function (3.14) that appears in [7],

which will generalize more readily in the next subsection for any transverse Kähler class [ω].

In terms of toric geometry, the Sasakian volume (3.14) is [7]

Vol = Vol(~b) =
(2π)3

|~b|
vol(P (~b)) , (3.17)

where here |~b| =

√

(~b,~b) denotes the Euclidean norm of ~b, and vol(P (~b)) denotes the

Euclidean area of the Sasakian polytope P defined in (3.11). In [7] a somewhat roundabout

method was used to compute this, but here we take a direct approach. Specifically, the

(signed) area of a compact convex polytope may be obtained by choosing any point in the

interior, and then summing areas of triangles obtained by joining that interior point to
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each vertex. In turn each such triangle area may be written as a two-dimensional cross

product. Thus pick any point ~y0 ∈ P , and define the area vector

~A ≡
1

2

d
∑

a=1

(~ya − ~y0) ∧ (~ya+1 − ~y0) . (3.18)

Here as above ∧ denotes the three-dimensional cross product, and recall we cyclically

identify ~yd+1 ≡ ~y1. Although each term in the sum (3.18) depends on the choice of ~y0,

the area vector ~A obtained by summing all contributions does not. By construction ~A

is orthogonal to the Reeb hyperplane, and hence proportional to the R-symmetry vector
~b. Provided we choose our cyclic ordering of the ~va = (1, ~wa) anti-clockwise in the plane

R2 ⊃ Z2 ∋ ~wa, by the right hand rule the area vector will point in the same direction as

the R-symmetry vector ~b, so that the area of P is the inner product

vol(P (~b)) =

(

~A,
~b

|~b|

)

. (3.19)

This then gives the Sasakian volume formula

Vol = (2π)3
( ~A,~b)

(~b,~b)
=

π3

(~b,~b)

d
∑

a=1

(

~ua

(~ua,~b)
− 2~y0,

~ua+1

(~ua+1,~b)
− 2~y0,~b

)

, (3.20)

where (·, ·, ·) denotes a 3×3 determinant. Notice that although geometrically we required ~y0
to lie in H, it is straightforward to see that (3.20) is completely independent of ~y0 ∈ R3. In

particular we may choose to set ~y0 = 0. In fact for Gorenstein Kähler cones there is in some

sense a more natural (non-zero) choice of ~y0, as we shall see shortly. The formula (3.20)

is at first sight different to that appearing in [7], but of course by construction it must be

equivalent. We shall explicitly recover the formula appearing in [7] in the next subsection,

after first generalizing (3.20).

We conclude this subsection by noting that although we have so far phrased everything

in terms of toric Sasakian geometry, in fact the volume function (3.20) has more general

validity. In particular, for the application to the off-shell AdS3 geometries, recall that the

cone C(Y7) = R>0 × Y7 is complex but in fact not Kähler. For Y7 of the fibred form (1.2),

the cones over the fibres C(Y5) = R>0×Y5 are complex, and by assumption also toric, with

the R-symmetry vector written as in (3.4) in terms of the holomorphic U(1)3 action. The

formula (3.16) immediately implies that the Sasakian volume is an invariant of a complex

cone, together with a choice of R-symmetry vector. This fact also follows from the relation

of the Sasakian volume to the index-character/Hilbert series derived in [8], since the latter

depend only on the complex geometry of the cone, and not on a Kähler structure. In fact

it’s the formula (3.16) for the Sasakian volume that is directly relevant to our problem,

and which we shall generalize next.

3.2 Varying the transverse Kähler class

In this section we would like to derive an analogous formula to (3.20) for the master

volume function (3.2). In fact the Sasakian volume (3.20) is the master volume in the
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special case that the transverse Kähler class is [ω] = [ωSasakian] = [ρ]/2b1. Thus, as in

the previous subsection, we fix a Gorenstein toric complex cone C(Y5) and also choose an

R-symmetry vector ~b as in (3.4). We would then like to vary the transverse Kähler class.

This is perhaps easiest to think about first in the quasi-regular case, where by definition

the R-symmetry vector generates a U(1) action and V ≡ Y5/U(1) is a Kähler orbifold.

Then H2
B(Fξ)

∼= H2(V ;R), and for a Kähler cone metric on C(Y5) the Kähler class of the

Kähler form ωSasakian on this base is fixed to be proportional to the topological class [ρ],

as in (3.15). In particular, varying the Kähler class [ω] away from ωSasakian means that the

metric (3.6) on Y5 will no longer be Sasakian. On the other hand, changing the Kähler

class is well understood in toric geometry for the base V : it simply moves the edge vectors

of the polytope P parallel to themselves. We begin by reviewing this, following [9], before

generalizing the discussion to the case at hand.

Let V be a compact toric Kähler four-manifold V . There is an associated moment map,

with moment map image being a compact convex polytope ∆ ⊂ R2, with inward pointing

primitive edge vectors ~na ∈ Z2, a = 1, . . . , d. The polytope may then be written as

∆ = {~x ∈ R2 | (~x, ~na) ≥ λa , a = 1, . . . , d} . (3.21)

The parameters λa ∈ R determine the Kähler class. Explicitly [9]

[ω] = −2π
d

∑

a=1

λaca ∈ H2(V ;R) , (3.22)

where ca ∈ H2(V ;Z) are Poincaré dual to the d toric divisors. By definition the latter are

the torus-invariant divisors, which map to the edges of the polytope ∆ under the moment

map. Since dimH1,1(V,R) = d− 2, in fact the Kähler class itself depends on only d− 2 of

the d parameters {λa}. We also recall that

[ρ] = 2π
d

∑

a=1

ca ∈ H2(V ;R) . (3.23)

We would now like to apply the above formalism of [9] in the transverse setting, where

R2 is identified with the Reeb hyperplane H and the moment map polytope ∆ ⊂ R2 is

identified with the Sasakian polytope P ⊂ H. In particular notice that the Sasakian Kähler

class [ωSasakian] satisfying (3.15) has

λa = −
1

2b1
, a = 1, . . . , d . (3.24)

Changing the transverse Kähler class [ωSasakian] → [ω] ∈ H2
B(Fξ) then amounts to moving

the edges of the Sasakian polytope P . In principle we could apply the toric geometry

formalism of [9] to this case by first projecting the Reeb hyperplane H in (3.12) onto

R2. However, as in the discussion of area in (3.18) and (3.19), it is more natural and

more invariant to write everything directly in terms of three-dimensional quantities. The

analogue of (3.21) is then

P = P(~b; {λa}) ≡ {~y ∈ H(~b) | (~y − ~y0, ~va) ≥ λa , a = 1, . . . , d} , (3.25)
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Here ~y0 is the canonical “origin” of the polytope P, given by

~y0 =

(

1

2b1
, 0, 0

)

∈ H , (3.26)

and H = H(~b) is the Reeb hyperplane (3.12).

Let us first see that (3.25) correctly reduces to the Sasakian polytope (3.11) in the

Sasakian case (3.24). The edge Ea of the Sasakian polytope P joining the ath vertex to

the (a+ 1)th vertex is

Ea =

{

(1− t)
~ua

2(~ua,~b)
+ t

~ua+1

2(~ua+1,~b)

∣

∣

∣

∣

∣

t ∈ [0, 1]

}

, (3.27)

where we have used the vertices of P given in (3.13). For ~y ∈ Ea it is then immediate to

verify that

(~y − ~y0, ~va) = −(~y0, ~va) = −
1

2b1
= λa |Sasakian . (3.28)

Here by construction (~ua, ~va) = 0 = (~ua+1, ~va), since ~va is normal to the facet in C generated

by the two edge vectors ~ua, ~ua+1. In fact the condition (3.28), which applies for all a =

1, . . . , d, fixes uniquely the origin ~y0 given by (3.26). This shows that the Sasakian polytope

is

P (~b) = P

(

~b;

{

λa = −
1

2b1

})

. (3.29)

The Sasakian volume Vol is given by (3.17), where vol(P (~b)) is the Euclidean area

of the Sasakian polytope P . Replacing the transverse Kähler class [ωSasakian] → [ω] then

simply replaces the area of P by the area of P in (3.25). It follows that the master volume is

V =

∫

Y5

η ∧
ω2

2!
=

(2π)3

|~b|
vol(P(~b; {λa})) . (3.30)

We may then compute (3.30) explicitly precisely as we did in the previous subsection: by

finding the vertices ~ya of P, and then using the area formula for a polytope in terms of its

vertices. The vertex ~ya is the intersection of edge a with edge a−1. Thus it simultaneously

solves the three equations

(~ya − ~y0, ~va) = λa , (~ya − ~y0, ~va−1) = λa−1 , (~ya − ~y0,~b) = 0 . (3.31)

The solution to this is

~ya = ~y0 +
λa~b ∧ ~va−1 − λa−1

~b ∧ ~va

(~va−1, ~va,~b)
. (3.32)

These are the positions of the vertices of P, as a function of the R-symmetry vector ~b and

Kähler class parameters {λa}. Since ~ua is related to ~va−1 and ~va via (3.10), we may also

write

(~va−1, ~va,~b) = (~ua,~b) . (3.33)
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Using (3.18) and (3.19), we then have

V =
(2π)3

|~b|
vol(P(~b; {λa})) , (3.34)

=
(2π)3

2(~b,~b)

d
∑

a=1

(

λa~b ∧ ~va−1 − λa−1
~b ∧ ~va

(~va−1, ~va,~b)
,
λa+1

~b ∧ ~va − λa~b ∧ ~va+1

(~va, ~va+1,~b)
,~b

)

.

Again, here we cyclically identify λd+1 ≡ λ1, λ0 ≡ λd. Finally, using a cross product

identity we can simplify this expression further. In particular the square norm (~b,~b) then

cancels, and we obtain the expression

V(~b; {λa}) =
(2π)3

2

d
∑

a=1

λa
λa−1(~va, ~va+1,~b)− λa(~va−1, ~va+1,~b) + λa+1(~va−1, ~va,~b)

(~va−1, ~va,~b)(~va, ~va+1,~b)
,

as reported in the introduction in (1.3). This is our final expression for the master vol-

ume (3.2), as a function of R-symmetry vector ~b and Kähler class parameters {λa}. Notice

V(~b; {λa}) is homogeneous degree −1 in the R-symmetry vector ~b, and quadratic and ho-

mogeneous degree 2 in the {λa}. We emphasize again that the transverse Kähler class

[ω], and hence also volume, only depend on d − 2 of the d variables {λa}. Taking (3.2)

and setting the λa all equal as in (3.24), it is straightforward to recover the original toric

formula for the Sasakian volume in [7]. Notice also that the {λa} are not arbitrary: they

must be chosen so that the transverse Kähler class is strictly positive. The space of such

Kähler classes is called the Kähler cone K, which in our transverse setting also depends on

the R-symmetry vector, K = K(~b).4

We end this section by deriving some formulas which will be useful in the following

section. Using (3.22) we can also write the master volume as

V = (2π)2
d

∑

a,b=1

1

2!
Iabλaλb , (3.35)

where the “intersection numbers” Iab are defined as

Iab ≡

∫

Y5

η ∧ ca ∧ cb =
1

(2π)2
∂2V

∂λa∂λb
. (3.36)

This is in fact independent of {λa}, since V is quadratic in {λa}. Of course, for irrational

choices of ~b, for which the generic orbits of the R-symmetry vector ξ are not closed, the Iab
will not even be rationally related, let alone integer. Notice that the Sasakian volume (3.16)

may be expressed as

Vol =
1

8b21

∫

Y5

η ∧ ρ2 =
1

8b21

d
∑

a,b=1

∂2V

∂λa∂λb
=

(2π)2

8b21

d
∑

a,b=1

Iab . (3.37)

4There is an unfortunate clash of meanings in the terminology Kähler cone: there is the definition

just introduced, which is a space of transverse Kähler classes (a real (d − 2)-dimensional cone), but also

the metric cone over a Sasakian manifold (3.3) is also called a Kähler cone (which in this paper has real

dimension 6). Hopefully the intended meaning will always be clear from the context.
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We may also compute integrals of wedge products of other cohomology classes using

these formulae. In particular using (3.22) we have

∫

Y5

η ∧ ρ ∧ ω = −(2π)2
d

∑

a,b=1

Iabλb = −
d

∑

a=1

∂V

∂λa
. (3.38)

Notice this is linear in the {λa}. We will also need certain integrals over the toric divisors.

The images of the toric divisors under the moment map are precisely the edges of the

polytope P. On the other hand, the Poincaré duals to these are precisely the ca introduced

in (3.22). Denoting the corresponding d torus-invariant three-manifolds by Sa ⊂ Y5, we

have
∫

Sa

η ∧ ω =

∫

Y5

η ∧ ω ∧ ca = −2π
d

∑

b=1

Iabλb = −
1

2π

∂V

∂λa
. (3.39)

It is interesting to note that we have the following vector identity

d
∑

a=1

~va

∫

Sa

η ∧ ω =
~b

b1

1

2π

∫

Y5

η ∧ ρ ∧ ω , (3.40)

which using (3.38), (3.39) may equivalently be written as

d
∑

a=1

(

~va −
~b

b1

)

∂V

∂λa
= 0 . (3.41)

Indeed, this is an identity, holding for all ~b and {λa}. To see this, first notice that the i = 1

component is trivial, since v1a = 1 for all a = 1, . . . , d. Next, since (3.41) is linear in λa,

this relation is equivalent to the coefficient of λa being zero, for each a = 1, . . . , d. On the

other hand, using the explicit form of the master volume (1.3) and a little rearrangement,

the coefficient of λa being zero in (3.41) is equivalent to

(~va, ~va+1,~b)~va−1 − (~va−1, ~va+1,~b)~va + (~va−1, ~va,~b)~va+1

=
~b

b1

[

(~va, ~va+1,~b)− (~va−1, ~va+1,~b) + (~va−1, ~va,~b)
]

. (3.42)

This identity in turn trivially follows after using the vector quadruple product identity

(~va, ~va+1,~b)~va−1 − (~va−1, ~va+1,~b)~va + (~va−1, ~va,~b)~va+1 = (~va−1, ~va, ~va+1)~b , (3.43)

on both sides and recalling that v1a = 1. The i = 2, 3 components of (3.40) are another

manifestation of the fact that there are only d − 2 independent Kähler class parameters,

parametrized by the {λa}. Indeed,
∫

Sa
η ∧ ω are proportional to the integral of the trans-

verse Kähler class over the toric divisors. Only d − 2 of these d integrals can be linearly

independent, and the i = 2, 3 components of (3.40) are the two linear relations.

Remarkably, as we shall see in the next section, the above formulae are all that we

need to impose the geometric dual of c-extremization for Y7 which are toric Y5 fibred over a

Riemann surface Σg! In particular, everything may be computed from the master volume V .
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4 Fibration over a Riemann surface

Having studied the geometry of Y5, we would now like to fibre this over a Riemann surface

Σg to obtain the internal seven-manifold Y7 of a type IIB AdS3 × Y7 supersymmetric

geometry.

4.1 Fibred geometry

Topologically, we fibre Y5 over Σg as follows. The fibres Y5 are toric, admitting an isometric

U(1)3 action. On the other hand, a U(1) bundle over a Riemann surface Σg is classified

topologically by its first Chern number n ∈ Z. The associated complex line bundle is usually

denoted O(n)Σg . We may then pick three Chern numbers ~n = (n1, n2, n3) ∈ Z3, associated

to each U(1) ⊂ U(1)3, giving the direct sum of line bundles O(~n)Σg ≡ ⊕3
i=1O(ni)Σg . We

then form the associated bundle

Y7 ≡ O(~n)Σg ×U(1)3 Y5 . (4.1)

The notation here means that we use the U(1)3 transition functions of O(~n)Σg to fibre Y5
over the Riemann surface Σg, using the toric action of U(1)3 on Y5.

In more physical terms, we may introduce three U(1) gauge fields Ai on Σg, i = 1, 2, 3,

with curvatures Fi = dAi satisfying
∫

Σg

Fi
2π

= ni ∈ Z . (4.2)

The fibration (4.1) then amounts to the replacement

dϕi → ϕi +Ai , (4.3)

where recall that ϕi, i = 1, 2, 3, are (2π)-period coordinates on the torus U(1)3. Before

proceeding to analyse the consequences of this, it is important to emphasize that all the

quantities of interest in section 2 depend only on basic cohomology classes. This was also

true in section 3. In particular this means that we may use convenient representatives of

certain forms in what follows — any representative will suffice, as long as it has the correct

basic cohomology class.

Before the twisting in (4.1) we may write the one-form η on Y5 as

η = 2
3

∑

i=1

widϕi . (4.4)

Here we have denoted

wi ≡ yi |r=1 , (4.5)

which are simply the moment map coordinates yi restricted to Y5. In particular, notice (4.4)

implies the formula (3.7) for the moment map coordinates yi, which are homogeneous degree

two under r∂r. Then the twisting (4.3) replaces

η → ηtwisted ≡ 2
3

∑

i=1

wi(dϕi +Ai) . (4.6)
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Notice that

dηtwisted = 2
3

∑

i=1

dwi ∧ (dϕi +Ai) + 2
3

∑

i=1

wiFi , (4.7)

where Fi is the curvature two-form on Σg satisfying (4.2).

Now the holomorphic (3, 0)-form Ω(3,0) on the cone C(Y5) over the fibre has an explicit

dependence eiϕ1 , since it has charge 1 under ∂ϕ1 [7]. On the other hand, the holomorphic

(4, 0)-form Ψ on C(Y7) is constructed by taking the wedge product of the canonical holo-

morphic (1, 0)-form on Σg with the (3, 0)-form Ω(3,0) on the fibre, twisting the latter using

O(~n)Σg . Of course, the (1, 0)-form on Σg is not globally defined in general (unless the genus

g = 1), being a nowhere zero section of O(2g−2)Σg . However, the twisting (4.1) means that

eiϕ1 is a nowhere zero section of O(n1)Σg . Neither section exists globally, but the product

does have a global nowhere zero section, and hence gives rise to a global (4, 0)-form Ψ on

C(Y7), precisely if

n1 = 2− 2g . (4.8)

Thus when ~n = (2− 2g, n2, n3) the cone C(Y7) has a global (4, 0)-form, with (n2, n3) ∈ Z2

being freely specifiable “flavour” twisting parameters.

The actual one-form η on Y7 for a supersymmetric geometry will be ηtwisted plus a

global basic one-form for the R-symmetry foliation Fξ on Y7. It then suffices to use ηtwisted

in place of η to evaluate the various integrals that appear in section 2, which we do in

section 4.2 below, since the global basic one-form will not contribute. Similar remarks

apply to the formula dη = ρ/b1 in (2.4), where recall that for a supersymmetric geometry

the holomorphic (4, 0)-form Ψ on C(Y7) has charge b1 = 2, and ρ is the Ricci two-form

for the transverse Kähler metric J . In general dηtwisted will not equal ρ/b1 as a differential

form, but in cohomology [dηtwisted] = [ρ/b1] ∈ H2
B(Fξ), which is sufficient for evaluating

the integrals in section 4.2.

There is a similar discussion for the Kähler form. Since ∂ϕi
are Killing vectors we

have L∂ϕi
ω = 0, which implies that ∂ϕi

yω is closed. Since manifolds Y5 admitting a toric

contact structure have b1(Y5) = 0, it follows that

∂ϕi
yω = −dxi , i = 1, 2, 3 , (4.9)

where xi are global functions on Y5, invariant under the torus action. Similarly to (4.7) we

may then define

ωtwisted ≡
3

∑

i=1

dxi ∧ (dϕi +Ai) +
3

∑

i=1

xiFi , (4.10)

which is a closed form, as it should be. Up to an irrelevant exact basic two-form, the

transverse Kähler form on Y7 may then be taken to be

J = ωtwisted +A volΣg + basic exact , (4.11)

where we normalize
∫

Σg
volΣg = 1, and A is effectively a Kähler class parameter for the

Riemann surface. Notice that the xi introduced in (4.9) are only defined up to the addition

of constants, leading to a corresponding ambiguity in (4.10). However, this freedom may
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then be absorbed into the definition of the constant parameter A in (4.11). We conclude

by noting the formulae

∂ϕi
yη = 2wi , ∂ϕi

ydη = −2dwi , ∂ϕi
yω = −dxi , (4.12)

which will be used repeatedly in the next subsection.

4.2 Evaluation of supergravity formulae

In this section we would like to evaluate the key off-shell supergravity formu-

lae (2.9), (2.10), (2.11) in terms of toric data of Y5 and the twisting parameters ~n. Using

the description of the fibred geometry in the previous subsection, we may immediately

write down the supersymmetric action (2.9) as

SSUSY =

∫

Y7

η ∧ ρ ∧
1

2!
J2 ,

= A

∫

Y5

η ∧ ρ ∧ ω + 2π
3

∑

i=1

ni

∫

Y5

η ∧ ω ∧ (b1wi ω + xi ρ) . (4.13)

Here we have split the integral over Y7 into an integral over the fibres Y5, and an integral

over the Riemann surface base Σg. As in the discussion around equation (3.2), in a slight

abuse of notation we have denoted the forms η and ρ = b1dη on Y7 and their restriction to

the fibres Y5 by the same symbol, in going from the first line to the second line in (4.13). To

evaluate this we have used the formulae (4.11), (4.10) for J , the formula (4.7) to evaluate

the ρ = b1dη term. The flavour twist parameters ni arise via the integrals in (4.2). Notice

that we may immediately use (3.38) to write the first term on the second line of (4.13) in

terms of the master volume V .

The aim of this subsection is to show that the second term in (4.13) may similarly be

written in terms of V , with corresponding formulae also for the constraint (2.10) and flux

quantization condition (2.11). Specifically, we claim that

∫

Y5

η ∧ ω ∧ (b1wi ω + xi ρ) = −b1
∂V

∂bi
. (4.14)

We may prove this as follows, generalizing some arguments that first appeared in [8]. Recall

that the master volume V is by definition

V =

∫

Y5

η ∧
1

2!
ω2 . (4.15)

As explained in section 3, this is a function of the R-symmetry vector ξ =
∑3

i=1 bi∂ϕi
, and

on the right hand side of (4.14) we are taking the partial derivative of V with respect to

the components bi. This may in turn then be computed by determining the first order

variations of η and ω under a variation of the R-symmetry vector ξ.

Focusing first on η, we thus write

ξ(t) = ξ + t∂ϕi
, η(t) = η + tνi , (4.16)
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where t is a (small) parameter, and νi is a one-form for each i = 1, 2, 3. Since by definition

ξ(t)yη(t) = 1 holds for all t, we immediately deduce

ξyνi = −∂ϕi
yη = −2wi , (4.17)

where in the last equality we have used (4.12). It follows that we may write

νi = −2wiη + νTi , (4.18)

where by definition ξyνTi = 0. Note that the one-form νi is precisely the first order variation

in η induced by varying the R-symmetry vector ξ in the direction of ∂ϕi
, which of course

in turn computes the partial derivative ∂/∂bi.

Similarly, we may write

ω(t) = ω + tαi , (4.19)

where αi is a closed two-form for each i = 1, 2, 3. Since ω(t) is by definition a transverse

Kähler form for all t, we have ξ(t)yω(t) = 0, which implies

ξyαi = −∂ϕi
yω = dxi , (4.20)

with the last equality again using (4.12). As in (4.18) we may then write

αi = η ∧ dxi + αTi , (4.21)

where ξyαTi = 0. Since αi is also closed, it follows that

αTi = −xidη + βTi , (4.22)

where βTi is a basic closed two-form. Of course, we are always free to shift the transverse

Kähler class [ω] ∈ H2
B(Fξ), which precisely corresponds to the freedom in choosing [βTi ] ∈

H2
B(Fξ) above. Indeed, V = V (ξ; [ω]) is a function both of ξ and [ω] ∈ H2

B(Fξ). If we wish

to compute the variation induced by varying the R-symmetry vector, keeping the {λa}

that parametrize the transverse Kähler class fixed, then βTi is basic exact, i.e. βTi = dγTi .

Putting all this together, we compute

∂V

∂bi
=

d

dt

∫

Y5

η(t) ∧
1

2!
ω(t)2

∣

∣

∣

∣

t=0

,

=

∫

Y5

(

νi ∧
1

2!
ω2 + η ∧ ω ∧ αi

)

=

∫

Y5

(

−2wiη ∧
1

2!
ω2 − η ∧ ω ∧ xidη

)

,

= −

∫

Y5

η ∧ ω ∧

(

wi ω +
xi
b1

ρ

)

, (4.23)

where the third equality uses the transverse form of Stokes’ theorem, with βTi = dγTi exact

and ω closed, and in the very last step we have used dη = ρ/b1. We have thus proven the

desired relation (4.14), and conclude that we may write the supersymmetric action (4.13) as

SSUSY = −A
d

∑

a=1

∂V

∂λa
− 2πb1

3
∑

i=1

ni
∂V

∂bi
. (4.24)
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Recall that a supersymmetric solution necessarily has b1 = 2, so that the holomorphic

(4, 0)-form Ψ on C(Y7) has charge b1 = 2 under the R-symmetry vector. However, the

partial derivative ∂V/∂bi in the second term in (4.24) involves regarding V as a function

of ~b = (b1, b2, b3), and one only sets b1 = 2 after taking this derivative.

We next turn to the constraint equation (2.10). Evaluating in a similar way to the

action (4.13), we compute

0 =

∫

Y7

η ∧ ρ2 ∧ J ,

= A

∫

Y5

η ∧ ρ2 + 2π
3

∑

i=1

ni

∫

Y5

η ∧ ρ ∧ (4b1wiω + xiρ) . (4.25)

Now recall from (3.38) that

∫

Y5

η ∧ ρ ∧ ω = −
d

∑

a=1

∂V

∂λa
. (4.26)

As in the computation of the action above, we then take the partial derivative with respect

to the R-symmetry vector

∂

∂bi

d
∑

a=1

∂V

∂λa
= −

∂

∂bi

∫

Y5

η ∧ b1dη ∧ ω , (4.27)

where we have replaced ρ = b1dη. There is hence an explicit b1-dependence in the integrand,

which leads to

∂

∂bi

d
∑

a=1

∂V

∂λa
=

∫

Y5

(4b1wiη ∧ dη ∧ ω + η ∧ dη ∧ xiρ)− δ1,i

∫

Y5

η ∧ dη ∧ ω . (4.28)

Using also (3.37) for the first term in the constraint equation (4.25), the latter thus reads

0 = A
d

∑

a,b=1

∂2V

∂λa∂λb
− 2πn1

d
∑

a=1

∂V

∂λa
+ 2πb1

d
∑

a=1

3
∑

i=1

ni
∂2V

∂λa∂bi
, (4.29)

where we have again used (4.26).

Finally, we turn to the flux quantization condition (2.11). Recall here that ΣA ⊂ Y7
form a representative basis of five-cycles, forming a basis for the free part of H5(Y7;Z),

where the representative submanifolds should be tangent to the R-symmetry vector ξ. A

distinguished such five-cycle is a copy of the fibre Y5 at a fixed point on the Riemann

surface base Σg. Denoting the corresponding five-form flux quantum number by N ∈ Z, in

this case (2.11) reads

2(2πℓs)
4gs

L4
N =

∫

Y5

η ∧ ρ ∧ ω = −
d

∑

a=1

∂V

∂λa
. (4.30)
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Being the five-form flux through Y5, it is natural to interpret N as the number of D3-branes

that we are wrapping on the Riemann surface Σg.
5 The remaining five-cycles Σa in Y7 are

generated by torus-invariant three-manifolds Sa ⊂ Y5 fibred over Σg, where a = 1, . . . , d.

Denoting the corresponding five-form flux quantum numbers by Ma ∈ Z, the quantization

condition (2.11) reads

2(2πℓs)
4gs

L4
Ma =

∫

Σa

η ∧ ρ ∧ J ,

= A

∫

Sa

η ∧ ρ+ 2π
3

∑

i=1

ni

∫

Sa

η ∧ (2b1wiω + xiρ) . (4.31)

Using (3.39) we then compute

∂

∂bi

∂V

∂λa
= −2π

∂

∂bi

∫

Sa

η ∧ ω = 2π

∫

Sa

η ∧

(

2wiω +
xi
b1
ρ

)

. (4.32)

Thus the flux quantization condition (4.31) reads

2(2πℓs)
4gs

L4
Ma =

A

2π

d
∑

b=1

∂2V

∂λa∂λb
+ b1

3
∑

i=1

ni
∂2V

∂λa∂bi
. (4.33)

The toric three-cycles [Sa] ∈ H3(Y5,Z) are not independent in H3(Y5,Z). Indeed, there

are d toric three-cycles, a = 1, . . . , d, but dimH3(Y5,R) = d− 3. Although {[Sa]} generate

the free part of H3(Y5,Z), they must then necessarily satisfy 3 relations. These are [10]

d
∑

a=1

via[Sa] = 0 ∈ H3(Y5;Z) , i = 1, 2, 3 , (4.34)

where {~va} are the inward pointing normals to the facets of the moment map polyhedral

cone. Fibering each Sa over Σg gives rise to a torus-invariant five-manifold Σa ⊂ Y7. We

then have the corresponding homology relation for five-cycles in Y7:

d
∑

a=1

via[Σa] = −ni[Y5] ∈ H5(Y7;Z) , i = 1, 2, 3 . (4.35)

In particular this immediately implies that

d
∑

a=1

viaMa = −niN , i = 1, 2, 3 , (4.36)

leading in general to d − 2 independent flux quantum numbers (the d − 3 independent

{Ma}, together with N).

5Although N is an integer, it is not necessarily an arbitrary integer, as we shall see in examples later in

the paper. Ultimately this is related to the fact that the fibre class [Y5] ∈ H5(Y7;Z) can be non-primitive,

i.e. there can exist an integer n > 1 such that [Y5]/n ∈ H5(Y7;Z) is still an integer class. In this case N is

necessarily divisible by n.
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Rather than prove (4.35), we instead present an elementary derivation of (4.36), which

is all that we will need for the present paper. Starting with the identity (3.41), which recall

holds for all ~b and all {λa}, taking derivatives leads to

d
∑

a,b=1

via
∂V

∂λa∂λb
=

bi
b1

d
∑

a,b=1

∂2V

∂λa∂λb
,

d
∑

a=1

via
∂2V

∂bj∂λa
=

(

δij
b1

−
biδ1j
b21

) d
∑

a=1

∂V

∂λa
+

bi
b1

d
∑

a=1

∂2V

∂bj∂λa
. (4.37)

Multiplying (4.33) by via and summing over a = 1, . . . , d then gives

2(2πℓs)
4gs

L4

d
∑

a=1

viaMa =
A

2π

d
∑

a,b=1

via
∂2V

∂λa∂λb
+ b1

d
∑

a=1

3
∑

j=1

vianj
∂2V

∂λa∂bj
. (4.38)

The right hand side may be evaluated using (4.37). The term proportional to A may be

eliminated using the constraint equation (4.29) to give

2(2πℓs)
4gs

L4

d
∑

a=1

viaMa =
bi
b1
n1

d
∑

a=1

∂V

∂λa
− bi

d
∑

a=1

3
∑

j=1

nj
∂2V

∂λa∂bj
(4.39)

+

(

ni −
bin1

b1

) d
∑

a=1

∂V

∂λa
+ bi

d
∑

a=1

3
∑

j=1

nj
∂2V

∂bj∂λa
= ni

d
∑

a=1

∂V

∂λa
.

Using the relation (4.30), one finally deduces (4.36).

4.3 Summary

We may now summarize the procedure for carrying out the geometric dual of c-

extremization in [3], for toric Y5 fibred over a Riemann surface Σg.

First choose a Gorenstein toric Kähler cone C(Y5), with toric data {~va = (1, ~wa) ∈

Z3 | a = 1, . . . , d}. We may then compute the master volume function

V(~b; {λa}) =
(2π)3

2

d
∑

a=1

λa
λa−1(~va, ~va+1,~b)−λa(~va−1, ~va+1,~b)+λa+1(~va−1, ~va,~b)

(~va−1, ~va,~b)(~va, ~va+1,~b)
. (4.40)

This is a function of both the trial R-symmetry vector ~b = (b1, b2, b3), and also the trans-

verse Kähler class parameters {λa | a = 1, . . . , d}. Two of the latter d variables are

redundant, so that in general V is a function of 3 + d− 2 = d+ 1 parameters.

The fibration over Σg is specified by the flavour twisting parameters ~n = (2−2g, n2, n3).

We next impose the constraint equation

0 = A
d

∑

a,b=1

∂2V

∂λa∂λb
− 2πn1

d
∑

a=1

∂V

∂λa
+ 2πb1

d
∑

a=1

3
∑

i=1

ni
∂2V

∂λa∂bi
, (4.41)
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and flux quantization conditions

2(2πℓs)
4gs

L4
N = −

d
∑

a=1

∂V

∂λa
, (4.42)

2(2πℓs)
4gs

L4
Ma =

A

2π

d
∑

b=1

∂2V

∂λa∂λb
+ b1

3
∑

i=1

ni
∂2V

∂λa∂bi
. (4.43)

Here A is effectively an additional Kähler class parameter for Σg, making d+2 parameters

in total. As explained at the end of the previous subsection, the {Ma | a = 1, . . . , d}

comprise d− 3 independent flux quantum numbers, due to the topological relation (4.36).

Thus generically equations (4.41), (4.42), (4.43) impose 1 + 1 + d− 3 = d− 1 relations.

Finally, we set b1 = 2 so that the holomorphic (4, 0)-form Ψ has charge b1 = 2 under

the R-symmetry vector. In total we have then imposed d relations on the d+2 parameters,

so that the resulting action

SSUSY = −A
d

∑

a=1

∂V

∂λa
− 2πb1

3
∑

i=1

ni
∂V

∂bi
, (4.44)

is in general a function of two remaining variables.6 Extremizing this action or, equivalently,

the off-shell central charge

Z =
3L8

(2π)6g2sℓ
8
s

SSUSY , (4.45)

we then have that its value at the critical point gives the on-shell central charge

csugra = Z |on−shell . (4.46)

As in [3, 11] we may also compute the R-charges Ra = R[Sa] of baryonic operators

dual to D3-branes wrapping the supersymmetric three-manifolds Sa ⊂ Y7, at a fixed point

on the base Σg. These are given7 by the general formula [11]

Ra = R[Sa] =
L4

(2π)3ℓ4sgs

∫

Sa

η ∧ ω = −
L4

(2πℓs)4gs

∂V

∂λa
, (4.47)

where we have used (3.39) in the second equality. Note that (4.42) then implies that

d
∑

a=1

Ra = 2N . (4.48)

For the quiver gauge theories we discuss in examples later in the paper, this last relation has

the simple interpretation that each term in the superpotential has R-charge 2. The same

6An exception to this counting is the untwisted g = 1 examples studied in [3]. We discuss this case

further in section 6.
7The expression for the R-charges in [11] were obtained using a calibration type argument. The consis-

tency of the results in [3] and in this paper provide overwhelming evidence for its veracity. Nevertheless, it

would be desirable to provide a direct proof using κ-symmetry.
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relation holds for the parent AdS5 × Y5 solutions [10]. In fact using (3.40) equation (4.48)

is simply the i = 1 component of the relation

d
∑

a=1

~vaRa = 2
~b

b1
N = ~bN , (4.49)

in the last step setting b1 = 2. Compare this to the homology relations (4.36). The

relation (4.49) will be of practical use later, in relating Z -extremization in gravity to

c-extremization in the dual field theory.

4.4 Existence of solutions

The Z -extremization procedure just summarized determines the central charge (4.46) and

R-charges of BPS baryonic operators (4.47) in gravity, assuming such a solution exists. In

this section we elaborate further on this point.

It is instructive to first compare our Z -extremization problem to volume minimiza-

tion [7, 8]. As we recalled after equation (3.16), here the Reeb vector ~b for a Sasaki-Einstein

metric extremizes the Sasakian volume Vol = Vol(~b), subject to the constraint b1 = 3. The

Sasakian volume is easily shown to be strictly convex, and tends to +∞ as one approaches

the boundary of the Reeb cone ∂C∗ from the interior. From this one can prove there always

exists a unique critical point ~b ∈ C∗

int, which minimizes the volume. It follows that volume

minimization determines the unique Reeb vector and Sasaki-Einstein volume, assuming

such a Sasaki-Einstein metric exists. The latter is then a problem in PDEs. In this toric

geometry setting, it was later proven in [12] that the relevant PDE always admits a so-

lution, thus fully solving the toric Sasaki-Einstein problem. The non-toric case is more

involved: there can be obstructions to the existence of a Sasaki-Einstein metric for a Reeb

vector that minimizes the volume; for example, those discussed in [13]. In this case the

minimized volume is not the volume of a Sasaki-Einstein manifold, since the latter doesn’t

exist! In fact much more can now be said about this general existence problem [14].

Similar issues arise for Z -extremization, although the situation is more involved. Re-

call that our construction in section 3 required the R-symmetry vector to be inside the

Reeb cone, ~b ∈ C∗

int, and the transverse Kähler class [ω] determined by the {λa} to be

inside the Kähler cone K(~b). If either of these don’t hold, the polytope P in (3.25) is not

well-defined. However, the formulae in section 4.3, including the master volume (4.40),

make sense for generic ~b, {λa}. After carrying out the extremal problem, one then has to a

posteriori check that the critical values of ~b and the transverse Kähler class determined by

{λa} indeed lie inside their respective Reeb and Kähler cones. It is clear already from the

examples studied in [3] that this is not necessarily the case, the conclusion then being that

such supergravity solutions do not exist. For example, a simple diagnostic is to look at

the final central charge (4.46) and R-charges (4.47). If the critical R-symmetry vector and

transverse Kähler class lie inside the Reeb and Kähler cone, respectively, these quantities

are guaranteed to all be positive. Thus if one is negative, the solution cannot exist. Of

course, this also has a straightforward dual interpretation in field theory, where the cen-

tral charge and R-charges of BPS operators should all be positive. This situation should
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however be contrasted with volume minimization for Sasaki-Einstein metrics, where there

always exists a unique critical Reeb vector inside the Reeb cone, with then a necessarily

positive critical volume.

In practice one thus needs to check some positivity conditions after performing Z -

extremization. We leave a general analysis of this problem for the future. However, one

still needs to show existence of a solution to the PDE (2.6), analogous to the Einstein

equation in the Sasaki-Einstein setting. Being at an extremum of Z can be viewed as a

necessary global condition for this PDE to admit a solution, but more generally one wants

to know if this is also sufficient. Given the situation in Sasaki-Einstein geometry, it is

natural to conjecture that there are no further obstructions to solving this PDE in the

toric case, but more generally one might expect more exotic obstructions, with some final

picture close to the K-stability of [14] for Sasaki-Einstein manifolds. Finally, as discussed

in [3], it is clear that for general supergravity solutions, starting with a convex polyhedral

cone C is too strong. We will recall this in relation to certain examples in section 6.1, and

again at the beginning of section 7. However, such geometries no longer have any obvious

relation to fibering Sasaki-Einstein geometries over a Riemann surface, and hence to dual

D3-brane quiver gauge theories wrapped on that Riemann surface. Such supergravity

solutions certainly exist, but there is currently no conjecture for the dual (0, 2) SCFT.

Most of these questions are clearly well beyond the scope of this paper. In the re-

mainder of the paper we apply the formalism summarized in section 4.3 to a variety of

examples, recovering results for various explicit supergravity solutions, and comparing to

c-extremization in the field theory duals. Remarkably, we will see in examples, and con-

jecture more generally, that the off-shell Z -function is directly related to the off-shell trial

c-function in field theory, thus leading to a (formal) matching between Z -extremization

and c-extremization. The positivity and existence questions raised in this subsection are

then reflected in the dual field theory as whether or not the putative IR superconformal

fixed point actually exists.

5 The universal twist revisited

As a warm-up we will begin by applying our general formalism to the case often referred

to as the universal twist in the literature. Specifically, we consider a seven-dimensional

manifold Y7 that is a fibration of a toric Y5 over a genus g > 1 Riemann surface Σg,

where the twisting is only along the U(1)R R-symmetry. The corresponding supergravity

solutions exist for any Y5 = SE5 that is a quasi-regular Sasaki-Einstein manifold, and were

constructed in [15]. Here the six-dimensional transverse Kähler metric in (2.3) is simply

a product H2/Γ × KE4, where H2/Γ is a constant negative curvature Riemann surface

Σg>1, and KE4 denotes the positive curvature Kähler-Einstein orbifold SE5/U(1)R. In

particular this product of Einstein metrics solves the PDE (2.6) in a trivial way, where the

total Ricci scalar R equals a positive constant. The gravitational central charges for these

solutions, calculated in [15], were shown to agree precisely with the central charges obtained

from c-extremization in the dual two-dimensional (0, 2) field theories in [16]. Below we will

show that indeed our formulas reduce to combinations of the corresponding toric Sasakian
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formulas, thus making direct contact with the results of [7]. We will also compute the R-

charges of the toric three-cycles Sa, highlighting the fact that they need to obey a simple

quantization condition.

Let us start by recalling the expressions for the toric Sasakian volume and the volumes

of the toric three-cycles. These are given by [7]

Vol(Y5) =
π3

b1

∑

a

(~va−1, ~va, ~va+1)

(~va−1, ~va,~b)(~va, ~va+1,~b)
, (5.1)

Vol(Sa) = 2π2 (~va−1, ~va, ~va+1)

(~va−1, ~va,~b)(~va, ~va+1,~b)
, (5.2)

respectively. In terms of the master volume V , we have

d
∑

a,b=1

∂2V

∂λa∂λb
= 8b21Vol(Y5) ,

d
∑

b=1

∂2V

∂λa∂λb
= 4πb1Vol(Sa) , (5.3)

where the first equation has already appeared in (3.37). The universal twist corresponds

to choosing the fluxes ni to be aligned with the R-symmetry vector, namely we require

ni =
n1

b1
bi , (5.4)

with n1 = 2−2g as in (4.8). Note that we will need to check, a posteriori, that after carrying

out c-extremization the on-shell value of~b is consistent with the left hand side of (5.4) being

integers. Inserting this into the formulas for the action (4.44), the constraint (4.41) and

the flux quantization condition (4.43), and using the fact that the master volume V is

homogeneous of degree minus one in ~b, these reduce respectively to

SSUSY = A
2(2πℓs)

4gs
L4

N + 2πn1V , (5.5)

0 = A
d

∑

a,b=1

∂2V

∂λa∂λb
+ 4πn1

2(2πℓs)
4gs

L4
N , (5.6)

2
(2πℓs)

4gs
L4

Ma =
A

2π

d
∑

b=1

∂2V

∂λa∂λb
− 2n1

∂V

∂λa
, (5.7)

with

2(2πℓs)
4gs

L4
N = −

d
∑

a=1

∂V

∂λa
. (5.8)

We can use (5.6) to eliminate A from the action, which can then be written as

SSUSY = 2πn1V −

(

(2πℓs)
4gs

L4

)2
2πn1N

2

b21Vol(Y5)
. (5.9)

Notice that the second term depends only on the R-symmetry vector ~b through the in-

verse Sasakian volume, similarly to the trial central charge of the related four-dimensional
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problem. On the other hand, the first term is still the general master volume, and thus it

depends also on the Kähler parameters λa.

Let us now consider the d relations (5.7). Using (5.3) and the explicit expression for

∂V/∂λa, we can write this as a linear system

(2π)2n1

d
∑

b=1

Iabλb = Ab1Vol(Sa)−
(2πℓs)

4gs
L4

Ma . (5.10)

Here Iab is the intersection matrix (3.36) which has rank d − 2, corresponding to the

redundancy of two of the Kähler parameters. There is thus no unique solution for the λa
in (5.10). However, one can show that there exists a “gauge” in which all the λa are equal

and solve (5.10). In particular, setting λa = λ for a = 1, . . . , d we have

V = 4b21λ
2Vol(Y5) , (5.11)

with the value of λ being determined, from (5.8), by the quantization condition

λ = −
(2πℓs)

4gsN

4L4b21Vol(Y5)
. (5.12)

Inserting this into the action, the latter then reads

SSUSY = −

(

(2πℓs)
4gs

L4

)2
3n1πN

2

2b21Vol(Y5)
. (5.13)

As in the Sasakian setting, this action has to be extremized with respect to b2, b3,

holding b1 fixed. However, presently we have to set b1 = 2, while in the Sasaki-Einstein

case we have b1 = 3. Defining ~b = 2
3~r and using the fact that Vol(Y5) is homogeneous of

degree minus three in ~b, we can rewrite the action as

SSUSY(~r) = −

(

(2πℓs)
4gs

L4

)2
πn1N

2

(32)
2b21Vol(Y5)(~r)

. (5.14)

Since Vol(Y5)(~r) with r1 = 3 is extremized by the critical Reeb vector ~r = ~r∗, with

Vol(Y5)(~r∗) being the Sasaki-Einstein volume, we conclude that SSUSY(~r) is extremized

for the critical R-symmetry vector given by

~b∗ =
2

3
~r∗ . (5.15)

The value of the trial central charge at the critical point is then

Z |on−shell = −
4n1π

3N2

3Vol(Y5)(~r∗)
, (5.16)

where the last step uses (1.1). Finally, recalling the standard relation between the a central

charge of the four-dimensional SCFT and the volume of the Sasaki-Einstein manifold of

the corresponding AdS5 × Y5 type IIB solution,

a4d =
π3N2

4Vol(Y5)(~r∗)
, (5.17)
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we obtain the relation

csugra = Z |on−shell =
32

3
(g − 1)a4d , (5.18)

in agreement with the explicit supergravity solutions [15] and c-extremization in the two-

dimensional (2, 0) SCFTs [16].

It is straightforward to compute the geometric R-charges, which read

Ra =
πNVol(Sa)(~r∗)

3Vol(Y5)(~r∗)
= NR4d

a , (5.19)

where R4d
a denote the (geometric) R-charges of the four-dimensional theories (which are

usually defined without the factor of N). This is in agreement with the field theory results

and with the explicit gravitational solutions [11]. Note that (5.7) relates the R-charges to

the integer fluxes Ma, as

Ma = (g − 1)NR4d
a , (5.20)

implying in particular that the R-charges of the parent four-dimensional theory must be

rational numbers. This is a manifestation of the fact that, as discussed in [15], the Sasaki-

Einstein manifolds must be quasi-regular with Reeb vector ~r∗ ∈ Q3 so that the exact

R-symmetry ~b∗ of the four-dimensional theory in (5.15) generates a U(1) action on Y5 and

the twisting (5.4) is well-defined.8 Conversely, for a fixed quasi-regular Sasaki-Einstein

manifold with spectrum of R-charges {R4d
a ∈ Q}, since the left hand side of (5.20) must be

integers, this leads to a corresponding divisibility condition on the integer (g − 1)N .

6 SE5 quiver theories reduced on Σg

It is straightforward to apply our general formalism to examples of Y7 arising as a fibration

of Y5 over Σg, with Y5 given by toric Sasaki-Einstein spaces, SE5, which have more general

twisting than the universal twist considered in the last section. To illustrate we will consider

Y5 = Y p,q, and Y5 = Xp,q. These include Y 2,1 and X2,1, which are the SE5 manifolds

associated with the canonical complex cones over the first and second del Pezzo surfaces,

dP1, dP2, respectively. In each case we calculate the off-shell trial central charge, Z , and

then extremize to obtain the on-shell central charge, csugra = Z |on−shell, and R-charges.

Furthermore, we also show how these results explicitly agree with c-extremization in the

dual d = 4 quiver gauge theories, dual to the SE5, after reducing on Σg with suitable twist.

In fact, we will see that, generically, there is actually an off-shell agreement between the field

theory trial central charge after extremizing over the baryon mixing, and the trial central

charge arising in the geometry computation. A similar off-shell agreement also arises for

the R-charges. As discussed in section 4.4, the matching between our geometric results and

field theory is a priori a formal matching, since it assumes existence of the supergravity

solution. We discuss some of these issues further also at the beginning of section 7.

8Note that if for a given Sasaki-Einstein manifold and genus g the ni in (5.4) are not integers, then we

can consider taking an orbifold of the Sasaki-Einstein space, as discussed in [15].
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6.1 Y p,q

The Y p,q Sasaki-Einstein metrics were first constructed in [17], and the associated toric

data was derived in [18]. The inward pointing normal vectors are given by

~v1 = (1, 0, 0) , ~v2 = (1, 1, 0) , ~v3 = (1, p, p) , ~v4 = (1, p− q − 1, p− q) . (6.1)

Notice that these are properly ordered in an anti-clockwise direction. Furthermore, the

Sasaki-Einstein metrics have p > q > 0 and the polyhedral cone with vectors ~va is convex.

We want to consider Y7 which are obtained by a fibration of Y p,q over Σg. As usual, we

take n1 = 2(1−g), and for simplicity we restrict to considering flavour fluxes that preserve

the SU(2) symmetry and set9 n2 = n3. It will be convenient to separate the cases when

the genus g 6= 1 from the case when g = 1. This is both because the expressions can then

be expressed in a more compact form, and also because it allows us to highlight a novel

feature for the g = 1 case.

Genus g 6= 1. In this case it is convenient to rescale the fluxes Ma as well as the flavour

flux parameter n2 as follows:

Ma ≡ ma(g − 1)N , n2 = n3 ≡ s(g − 1) , for g 6= 1 . (6.2)

Using (6.1) we can immediately obtain an explicit formula for master volume function

V(~b; {λa}) given in (4.40) and hence the various derivatives appearing in the expres-

sions (4.41)–(4.44), taking care to set b1 = 2 after taking the derivatives. We can then

solve the equations as follows. Start with the constraint condition (4.41), the expressions

for the flux N given in (4.42) and one of the fluxes Ma given in (4.43), which we take to be

M1 for definiteness. We can then use these to solve for A and two of the four λa, say λ3, λ4,

in terms of N,m1, s, b2 , b3 as well as λ1, λ2. Since there are only two independent Kähler

class parameters, it must be the case, and indeed it is, that λ1 and λ2 will drop out of any fi-

nal formula. The remaining three fluxes ma (giving the Ma) for a = 2, 3, 4 are then given by

m2 = m4 =
−mp+ 2p+ s

p+ q
, m3 =

(m− 2)(p− q)− 2s

p+ q
, (6.3)

where we have defined m ≡ m1. The equality of m2 and m4 arises because our

twisting preserves SU(2) symmetry. One can immediately check that these satisfy the

relation (4.36) arising from the homology relation (4.35), as expected.

The action, SSUSY, given in (4.44) and hence the trial central charge, Z , given

by (4.45), can now easily be calculated. As the form is rather long, it is more conve-

niently written after performing the following linear change of variables

b2 = (p− q − 2)ǫ1 − pǫ2 + p− q , b3 = (p− q)ǫ1 − pǫ2 + p− q . (6.4)

In fact we will see later in this subsection that this change of variables can actually be

derived from the field theory analysis, where ǫ1 and ǫ2 are field theory variables. In the

new (ǫ1, ǫ2) variables the trial central charge (after setting b1 = 2) is given by

9Note that we should not set b2 = b3 at this stage, but we will derive this condition from extremization.
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Z (ǫ1,ǫ2)=6(g−1)N2

{

[s+(p−q)(1−m)]ǫ21

+p
s2
(

p2+pq+q2
)

+sp
[

p2+mpq−(m−3)q2
]

+p2
[

(m−1)(p2+2pq)+(3+(m−3)m)q2
]

(p+q)2(p2−(s+p)q)
ǫ22

+2
p2(s+p)(s+p−mp)−p2

[

s(3−2m)+(m−2)2p
]

q+
[

s2−s(m−3)p+(3+(m−3)m)p2
]

q2

(p+q)(p2−(s+p)q)
ǫ2

+
[3+(m−3)m]p2(p−q)2−sp(p−q)[(2m−3)p−(m−3)q]+s2

(

p2−pq+q2
)

p3−p(s+p)q

}

. (6.5)

In particular, notice there is no ǫ1 term in this quadratic, which immediately sets ǫ1 = 0

for the critical point. From (6.4) this then implies b2 = b3 at the critical point, which was

expected due to the fact the twist preserves SU(2) symmetry. The critical R-symmetry

vector has ~b = (2, b2, b2) with

b2 = p
−p3

[

(m−3)s+(m−2)2q
]

+p2
[

2(m−1)sq+(m−2)2q2+2s2
]

+psq(s−(m−3)q)+s2q2

(m−1)p4+p3 [2(m−1)q+s]+p2 [msq+((m−3)m+3)q2+s2]+psq(s−(m−3)q)+s2q2
.

(6.6)

Furthermore, the on-shell central charge, csugra = Z |on−shell, is given by

csugra =
6(g−1)N2p((m−2)p−s)

[

(m−2)(m−1)p3+p2(−2ms−(m−2)(m−1)q+s)+(m−3)psq−s2q
]

(m−1)p4+p3(2 [(m−1)q+s]+p2 [msq+((m−3)m+3)q2+s2]+psq(s−(m−3)q)+s2q2
,

(6.7)

and the on-shell R-charges are

R1 = −
N(p+q)

[

(m−4)(m−1)p3−p2((3m−4)s+((m−3)m+4)q)+ps((m−4)q+s)−s2q
]

(m−1)p4+p3(2(m−1)q+s)+p2(msq+((m−3)m+3)q2+s2)+psq(s−(m−3)q)+s2q2
,

R2=R4 =
Np2((m−2)p−s)((m−1)p−s+q)

(m−1)p4+p3(2(m−1)q+s)+p2(msq+((m−3)m+3)q2+s2)+psq(s−(m−3)q)+s2q2
, (6.8)

R3 = −
N(p+q)

[

(m−2)(m−1)p3−p2(ms+(m−2)(m−1)q)−ps(s−(m−2)q)−s2q
]

(m−1)p4+p3(2(m−1)q+s)+p2(msq+((m−3)m+3)q2+s2)+psq(s−(m−3)q)+s2q2
.

Genus g = 1, n2 6= 0. With the twisting still taken to preserve SU(2), so that n2 = n3,

we begin by rescaling the fluxes via

Ma = maN , for g = 1 . (6.9)

When n2 6= 0 the procedure is essentially identical to the g 6= 1 case above, and we again

just record the final results. The fluxes ma for a = 2, 3, 4 are given by

m2 = m4 =
n2 −mp

p+ q
, m3 =

m(p− q)− 2n2

p+ q
, (6.10)
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with m ≡ m1, which clearly satisfy (4.36). Using the new variables given in (6.4) the trial

central charge (after setting b1 = 2) is given by

Z (ǫ1, ǫ2) = 6N2

{

[m(q − p) + n2] ǫ
2
1 (6.11)

−
p
(

m2p2q2 +mn2pq(p− q) + n2
2

(

p2 + pq + q2
))

n2q(p+ q)2
ǫ22

+ 2

(

m2p2q(p− q) +mn2p(p− q)2 − n2
2

(

p2 + q2
))

n2q(p+ q)
ǫ2

−

(

m2p2(p− q)2 −mn2p
(

2p2 − 3pq + q2
)

+ n2
2

(

p2 − pq + q2
))

n2pq

}

.

The critical R-symmetry vector has ~b = (2, b2, b2) with

b2 =
p
[

m2p2q(q − p)−mn2p(p− q)2 + n2
2

(

2p2 + pq + q2
)]

m2p2q2 +mn2pq(p− q) + n2
2 (p

2 + pq + q2)
, (6.12)

and the on-shell central charge, csugra = Z |on−shell, is given by

csugra =
6N2p(mp− n2)

[

m2p2(p− q) +mn2p(q − 2p)− n2
2q
]

m2p2q2 +mn2pq(p− q) + n2
2 (p

2 + pq + q2)
. (6.13)

The on-shell R-charges are

R1 = −
N(p+ q)

[

(m2p2 + n2
2)(p− q) +mn2p(q − 3p)

]

m2p2q2 +mn2pq(p− q) + n2
2 (p

2 + pq + q2)
,

R2 = R4 =
Np2(n2 −mp)2

m2p2q2 +mn2pq(p− q) + n2
2 (p

2 + pq + q2)
,

R3 = −
N(p+ q)

[

mp(p− q)(mp− n2)− n2
2(p+ q)

]

m2p2q2 +mn2pq(p− q) + n2
2 (p

2 + pq + q2)
. (6.14)

Genus g = 1, n2 = 0. Interestingly, for this particular case we now need to proceed

slightly differently.10 In this case the constraint equation (4.41) is independent of the λa
and so it must be solved for one of the components b2, b3, and we choose to solve it for b3.

The expressions for the fluxes Ma are also independent of the λa. Using the expression for

M1 we can solve for A. Finally, we can use the expression for N to solve for one of the λa,

which we choose to be λ4. The fluxes Ma for a = 2, 3, 4 are then given by

M2 = M4 = −
M1p

p+ q
, M3 =

M1(p− q)

p+ q
. (6.15)

Clearly the condition (4.36) is satisfied. The off-shell central charge, with b1 = 2, can be

written as

Z =
6M1N(q − p)(b2q + 2p)[b2q + 2p(p− q − 1)]

q2(−p+ q + 2)2
, (6.16)

10We note that for p > q > 0 this is also an example of an obstructed AdS3 × Y7 geometry [3], of the

type discussed in section 4.4. Specifically, the critical R-symmetry vector, given in (6.17), lies outside the

Reeb cone. We discuss this further at the beginning of section 7.
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which is a quadratic in b2 only (as we have already solved for b3). Extremizing this with

respect to b2, and combining with the previously obtained expression for b3, we find that

the critical R-symmetry vector has ~b = (2, b2, b2) with

b2 =
p(q − p)

q
, (6.17)

and the on-shell central charge, csugra = Z |on−shell, is given by

csugra =
6M1Np2(p− q)

q2
. (6.18)

Furthermore, and interestingly, the on-shell R-charges can be written in the form

R1 =
N(q2 − p2)

q2
+ (p+ q)Nγ ,

R2 = R4 =
Np2

q2
− pNγ ,

R3 =
N(q2 − p2)

q2
+ (p− q)Nγ , (6.19)

where γ is an undetermined parameter given by

γ =
p

q2
−

L4q[λ1(p+ q) + λ3(q − p)]

2πNgsℓ4sp
2(p2 − q2)

. (6.20)

Since λ4 was already fixed, we can view γ as parametrizing an undetermined transverse

Kähler class. In other words, for this particular case, with g = 1 and n2 = 0, the c-

extremization procedure that we are implementing does not fix one of the two independent

transverse Kähler classes. This was the novel feature concerning this case that we wanted

to highlight.

To clarify this feature further, we first note that we can recover the results for the cen-

tral charge and fluxes given in [3]. These quantities were calculated in [3] both using an ex-

plicit supergravity solution, confirming the results of [19], as well as using a localization for-

mula. We also recall that the supergravity solutions only exist for q > p > 0, for which the

polyhedral cone C associated with the ~va in (6.1) is not convex (see the discussion at the be-

ginning of section 7). Specifically, if we set M1 = −(p+q)M in the above expressions we get

M2 = M4 = pM, M3 = (q − p)M, (6.21)

and

csugra =
6MNp2(q2 − p2)

q2
, (6.22)

in agreement with [3]. The R-charges that were given in [3] were obtained from the

explicit supergravity solution. In order to recover the expressions in [3] we need to impose

the extra condition that γ = 0, or equivalently

λ3 = (p+ q)

(

λ1

p− q
−

2πgsℓ
4
sNp3

L4q3

)

. (6.23)
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Field Multiplicity R0-charge U(1)B U(1)F1 U(1)F2

Y (p+ q)N2 0 p− q 0 −1

Z (p− q)N2 0 p+ q 0 1

U1 pN2 1 −p 1 0

U2 pN2 1 −p −1 0

V1 qN2 1 q 1 1

V2 qN2 1 q −1 1

λ 2p(N2 − 1) 1 0 0 0

Table 1. The field content of the Y p,q quiver theories.

At this point one might conjecture that supergravity solutions generalising the one

discussed in [3], with an extra parameter associated with the free transverse Kähler class,

might exist. However, we do not think this is the case. We first point out that γ = 0

arises naturally in (6.19) as the n2 → 0 of the R-charges (6.14) with general n2. Secondly,

as we shall discuss further at the very end of the subsection, the associated field theory

analysis clearly shows that γ = 0.

Dual field theory and c-extremization. We now turn attention to the c-extremization

procedure in field theory, starting with the quiver gauge theory dual to the Y p,q Sasaki-

Einstein spaces [20], which have p > q > 0. The field content of these theories is presented

in table 1. The gauge group is SU(N)2p, the λ are the gauginos, and the remaining fields are

bifundamental matter fields. The U(1)B corresponds to the baryonic symmetry associated

to the single non-trivial three-cycle of Y p,q, while U(1)Fi
, i = 1, 2, are flavour symmetries

corresponding to U(1) isometries under which the holomorphic volume form Ω(3,0) is un-

charged. In particular U(1)1 ⊂ SU(2) is the Cartan of the SU(2) isometry that acts on the

round S2 in the metric. We emphasize that R0 is not the R-charge of the dual SCFT in d =

4 (which can be found in [20]). Instead, as in [3], R0 is a simple fiducial R-charge that can be

used in the c-extremization procedure for the putative d = 2 SCFT. Geometrically, R0 cor-

responds to the Killing vector ∂ψ in the Y p,q metric, in the original coordinates used in [17].

We consider these d = 4 SCFTs theories wrapped on Σg, with a partial topological

twist given by a background gauge field switched on along the generator

Ttop = f2TF2 +BTB +
κ

2
RR0 . (6.24)

Here TF2 , TB and TR0 are the generators of U(1)2, U(1)B and the fiducial R-symmetry,

respectively, and

κ =















1 g = 0 ,

0 g = 1 ,

−1 g > 1 .

(6.25)

Notice that generically the four-dimensional superconformal R-symmetry is a linear combi-

nation of R0 and U(1)B, U(1)F2 . Our basis is hence different to that used in [16], implying
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that the parameters f2, B in (6.24) are generically different to the analogous parameters

appearing in [16]. The fact that TF1 does not appear in (6.24) is precisely the condition

that we preserve the SU(2) flavour symmetry. The trial R-charge is a linear combination

Ttrial = TR0 + ǫBTB + ǫ1TF1 + ǫ2TF2 , (6.26)

where ǫB, ǫi are parameters. The trial c-function is given by [1]

c(ǫB, ǫ1, ǫ2) = −3η̄
∑

σ

mσtσ(q
(σ)
R )2 , (6.27)

where the sum is over all fermion fields, labelled by σ, mσ is their multiplicity, tσ is the

charge under the background gauge field (6.24) and q
(σ)
R is the charge with respect to the

trial R-symmetry (6.26). In addition

η̄ ≡

{

2|g − 1| g 6= 1 ,

2 g = 1 ,
(6.28)

and we note that η̄κ = 2(1− g) for all g. Using table 1 we find

c(ǫB, ǫ1, ǫ2) = −3η̄N2
{

2B
[

p2
(

2qǫ2ǫB − ǫ21 + ǫ22 + 1
)

+ 2p(q2 − p2)ǫB + q2
(

ǫ21 − 1
)]

+2f2q
(

p2ǫ2B + ǫ21 − 1
)

+ 4f2pǫ2(pǫB − 1) + κq2ǫB(pǫB − 2)

−κp
(

pǫB(pǫB − 2) + ǫ22
)

− 2κqǫ2

}

. (6.29)

The c-extremization procedure requires us to find the critical point of the

quadratic (6.29) in (ǫB, ǫ1, ǫ2). However, we shall do this in two stages. We first ex-

tremize (6.29) over the baryonic mixing parameter ǫB, which gives

∂c

∂ǫB
= 0 =⇒ ǫB =

1

p
−

2
[

B
(

pqǫ2 + q2 − p2
)

+ f2(pǫ2 + q)
]

2f2pq + κ (q2 − p2)
. (6.30)

Substituting this result back into (6.29) then gives

c(ǫ1, ǫ2) = −3η̄N2

{

2
[

B
(

q2 − p2
)

+ f2q
]

ǫ21 + p

[

4p2(Bq + f2)
2

κ(p2 − q2)− 2f2pq
+ 2Bp− κ

]

ǫ22

+

[

4Bpq − 2κq −
8p2(Bq + f2)(B(p2 − q2)− f2q)

κ(p2 − q2)− 2f2pq

]

ǫ2

+
4p

(

B
(

q2 − p2
)

+ f2q
)2

κ(p2 − q2)− 2f2pq
− 2B(p2 − q2) +

κ(p2 − q2)

p

}

. (6.31)

Genus g 6= 1. For |κ| = 1, let us compare (6.31) to the corresponding g 6= 1 supergravity

trial central charge function (6.5). Remarkably, after making the linear change of variable

(which we come back to below)

B =
p(m− 1) + q − s

2p(p+ q)
κ , f2 =

s+ p− q

2p
κ , (6.32)
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the field theory trial c-function (6.31) precisely matches the supergravity trial central charge

function (6.5). Thus after extremizing over the baryon mixing parameter ǫB, the field

theory and gravity c-functions agree off-shell ! Of course, it is then immediate that the

central charges computed on both sides will agree. Note this is true for an arbitrary Y p,q

fibred over an arbitrary genus g 6= 1 Riemann surface, with arbitrary flavour twisting

parameter f2 and baryon flux B. The change of variables in (6.4) and the second equation

in (6.32) is simply because the basis for the U(1)2 (non R-symmetry) flavour symmetries we

used in the geometry computation is different to that in table 1. Similarly, the parameter

m in the geometry computation was defined as m = M1/(N(g − 1)), where M1 is the

quantized five-form flux through the first toric divisor. This is then necessarily linearly

related to the parameter B in field theory, which is instead associated to the flux through

the generating three-cycle of Y p,q.

Even more remarkably, the off-shell R-charges also agree. Before extremizing over

ǫB, the trial R-charges of the fields (X1, X2, X3, X4) ≡ (Z,U2, Y, U1) are respectively (see

table 1)

R[X1] = ǫ2 + (p+ q)ǫB , R[X2] = 1− ǫ1 − pǫB ,

R[X3] = −ǫ2 + (p− q)ǫB , R[X4] = 1 + ǫ1 − pǫB . (6.33)

Extremizing the trial c-function over ǫB gives (6.30). Substituting in for the critical value

of ǫB then gives the R-charges

R[X1] = ǫ2 +
(p+ q)

[

2p
(

f2pǫ2 +B
(

−p2 + q2 + pqǫ2
))

+ (p2 − q2)κ
]

p[−2f2pq + (p2 − q2)κ]
,

R[X2] = −ǫ1 +
2p

[

f2(q + pǫ2) +B
(

−p2 + q2 + pqǫ2
)]

2f2pq + (−p2 + q2)κ
,

R[X3] = −ǫ2 +
(p− q)

[

2p
(

f2pǫ2 +B
(

−p2 + q2 + pqǫ2
))

+ (p2 − q2)κ
]

p[−2f2pq + (p2 − q2)κ]
,

R[X4] = ǫ1 +
2p

[

f2(q + pǫ2) +B
(

−p2 + q2 + pqǫ2
)]

2f2pq + (−p2 + q2)κ
, (6.34)

as functions of the remaining trial R-charge parameters (ǫ1, ǫ2). After the change of vari-

able (6.4), (6.32), remarkably these functions agree with the geometric R-charges, namely

Ra = R[Xa]N , a = 1, . . . , 4 , (6.35)

where Ra are defined in (4.47). Here, as for the trial central charge, we have imposed

the constraint and flux quantization conditions in the geometry computation, so that the

resulting trial R-charges (4.47) are functions of the R-symmetry vector ~b = (2, b2, b3), or

equivalently functions of the parameters (ǫ1, ǫ2) introduced in (6.4). Physically, the gauge-

invariant baryonic operator detXa constructed from each of the fields Xa has R-charge

R[Xa]N , and is dual to a D3-brane wrapped on the corresponding toric three-submanifold

Sa, as in (6.35). Since the R-charges match off-shell, they of course also match on-shell.

We now return to the change of the geometric variables (b2, b3) to the field theory

variables (ǫ1, ǫ2) that we introduced in (6.4). This may be derived from field theory, as
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follows. Consider the expressions for the R-charges (6.34), obtained in field theory after

substitution of the critical value of ǫB. Using the toric data via on the geometry side we

can calculate (see (4.49))
d

∑

a=1

viaR[Xa] = bi . (6.36)

On the left hand side the R[Xa] are given in (6.34), which are functions of ǫ1, ǫ2, and (6.36)

precisely implements the change of variable (6.4).

We also note that the linear change of variables given in (6.32) satisfies the following

simple relation

Ma = −η̄ t[Xa]N . (6.37)

Here the Ma are the fluxes on the gravity side, given for the Y p,q case in (6.2), (6.3),

while the t[Xa] are the charges11 of the bosonic fields (X1, X2, X3, X4) ≡ (Z,U2, Y, U1) of

the quiver gauge theory with respect to the background gauge field given in (6.24). We

conjecture that this is a general result, and we will see that it is satisfied for all of the

examples in this paper. For example, for the universal twist, considered in the last section,

the relation (5.20) can immediately be written in the form (6.37).

Genus g = 1. Finally, it is straightforward to derive similar results in the genus g = 1

case, where equivalently κ = 0. In the case that f2 6= 0, everything works in the same way,

with the change of variable (6.32) replaced by

B =
n2 −mp

2p(p+ q)
, f2 = −

n2

2p
, (6.38)

which again satisfies (6.37). The off-shell trial c-function in field theory (6.31), with κ = 0,

then matches the gravity trial c-function (6.11), with the κ = 0 R-charges (6.34) similarly

matching the geometric R-charges (4.47), as in (6.35).

For the g = 1 case with f2 = 0 we need to treat the field theory calculation slightly

differently, mirroring to some extent what we saw in the geometric calculation (just below

equation (6.14)). We can no longer solve for ǫB as we did in (6.30). Instead, if we extremize

the central charge (6.29) with respect to ǫi and ǫB we find

ǫ1 = 0 , ǫ2 =
p2 − q2

pq
, ǫB =

q2 − p2

pq2
. (6.39)

If we now set B = − M1
2(p+q)N and f2 = 0, consistent with (6.37), then we find that the on-

shell central charge agrees with the on-shell geometric result given in (6.22) (after setting

M1 = −(p+ q)M). Furthermore, for the R-charges using the identification as in (6.35) we

find agreement with (6.19), provided that we set γ = 0.

On the other hand, we can perform the c-extremization slightly differently in this case,

as follows. Since
∂c

∂ǫB
= 24BN2p

(

p2 − q2 − pqǫ2
)

, (6.40)

11Note that in (6.27) the charges, tσ, of the fermion fields with respect to (6.24) appeared.
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extremizing over the baryon mixing necessarily sets

ǫ2 =
p2 − q2

pq
. (6.41)

Substituting this back into the trial central charge then gives

c(ǫB, ǫ1) =
12BN2(q2 − p2)(p2 − q2ǫ21)

q2
. (6.42)

Notice this is independent of ǫB, so we have “lost” the extremal equation for this baryon

mixing parameter! This is simply a consequence of the fact that in this case ǫB appears

linearly in c(ǫB, ǫ1, ǫ2), and thus extremizing over it and substituting back into c sets its

coefficient to zero. One easily verifies (6.42) agrees with the off-shell gravity result (6.16),

where as above we set B = − M1
2(p+q) , and change variable from ǫ1 to b2 using (6.41) and (6.4).

Extremizing (6.42) sets ǫ1 = 0, leaving ǫB free. The R-charges of the fields are then

R[Z] =
q2 − p2

q2
+ (p+ q)γ ,

R[U1] = R[U2] =
p2

q2
− pγ ,

R[Y ] =
q2 − p2

q2
+ (p− q)γ , (6.43)

where we have substituted

ǫB =
q2 − p2

pq2
+ γ . (6.44)

The R-charges (6.43) agree with (6.19).

The above discussion makes it clear, in the context of the field theory analysis, that

the apparently unconstrained parameter γ in (6.43), that we saw in the gravitational cal-

culation, is an artefact of only partially performing the extremization: extremizing over a

parameter that appears linearly, and then substituting back into c, will miss the equation

of motion for that parameter, leaving it unconstrained. In field theory we have additional

baryon mixing parameters, ǫB, which must be extremized over before matching to the

off-shell gravity central charge function, and this sets ǫB = q2−p2

pq2
and hence γ = 0. This

suggests there might be a more general way to go off-shell in gravity, at least in the spe-

cial cases where the equation of motion γ = 0 arises directly from this modified extremal

problem, rather than as a limit of the general n2 equations discussed earlier in the section.

6.2 Xp,q

Having illustrated the general procedure in detail for the Y p,q spaces, it is now straight-

forward to implement our extremal problem in gravity for any choice of toric Calabi-Yau

3-fold singularity. After specifying the toric data, given by the inward pointing normal

vectors ~va, the process is then entirely algorithmic. In this section we briefly outline the

steps and key formulae for the case when Y5 = Xp,q. We will present most of the formulae

for general p > q > 0, but then specialise to the case of X2,1 for some of the more unwieldy
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expressions. Here X2,1 is the SE5 manifold associated to the canonical complex cone over

the second del Pezzo surface, dP2. Note that while there are also explicit supergravity solu-

tions for some of the Y p,q cases, in the Xp,q case the equation of motion (2.6) is genuinely a

PDE in 2 variables, with no reason to expect it to separate variables into decoupled ODEs,

and thus it seems very unlikely explicit supergravity solutions can be constructed in this

case. Our gravitational c-extremization is hence the only method available to compute the

central charge and R-charges on the gravity side, assuming the solution exists.

The toric Calabi-Yau cones for the Xp,q spaces have inward pointing normal vectors

~v1 = (1, 1, 0) , ~v2 = (1, 2, 0) , ~v3 = (1, 1, p) ,

~v4 = (1, 0, p− q + 1) , ~v5 = (1, 0, p− q) . (6.45)

The flavour twisting parameters are ~n = (2−2g, n2, n3), where we keep n2, n3 ∈ Z general.

Again, for illustrative purposes we only present formulae for the generic g 6= 1 case. As in

the previous section we rescale the fluxes Ma, a = 1, . . . , 5, and the flavour flux parameters

n2, n3 as follows:

Ma ≡ ma(g − 1)N, ni ≡ si(g − 1) , i = 2, 3 . (6.46)

After computing the master volume function (4.40), as before we then solve the constraint

condition (4.41), the expression for the flux N given in (4.42), and two of the fluxes Ma

given in (4.43), which we take to be M1,M2 for definiteness. We can then use these to

solve for A and three of the five λa, in terms of N,m1,m2, s2, s3, b2, b3. The remaining

two Kähler class parameters then drop out of the remaining formulae, as they must. The

remaining three fluxes ma (giving the Ma) for a = 3, 4, 5 are then given by

m3 = −m1 − 2m2 − s2 , m4 = p(m1 +m2 − 2) + q(m2 + s2 + 2)− s3 ,

m5 = p(−m1 −m2 + 2)− q(m2 + s2 + 2) +m2 + s2 + s3 + 2 . (6.47)

One can immediately check that these satisfy the relation (4.36), as expected.

It is again convenient to make a linear change of variables

b2 = 2 + ǫ1 , b3 = 2p+ ǫ2 , (6.48)

which, as in the last subsection, will be derived later using the field theory analysis. The

expression for the trial central charge function in gravity for general p and q is a little too

long to present here, so instead we present the result for X2,1:

Z (ǫ1, ǫ2) = 6(g−1)N
2

{

−16(m1+m2−2)2+8s2s3+2[−2(m1+m2−4)+s2]s
2

3
+3s3

3

2(8s2+s3(8+s3))
ǫ
2

1

+
2
[

m2

1
(s2−2)+2m1s2(2+m2+s2)+s2

(

2s2+(m2+s2)
2
)]

+2[4s2+(m1+m2+s2)(m2+2s2)]s3+s2s
2

3

2(8s2+s3(8+s3))
ǫ
2

2

+
2s2

2
s3−2m2

1
(4+s3)−4m1[s3+m2(2+s3)−4]+s2[8−8m2+3s3(4+s3)]+s3[−2m2(6+m2)+(3+s3)(8+s3)]

8s2+s3(8+s3)
ǫ1ǫ2

+
−32

[

2m2

1
+3m1(m2−2)+(m2−2)2+(m2−1)s2

]

+8[4+m2(m1+m2−s2−6)+3s2]s3+4(11−3m1−5m2+s2)s
2

3
+7s3

3

8s2+s3(8+s3)
ǫ1

+

[

−8m1(m2−2)(2+s2)−8s2[−2−s2+m2(2+m2+s2)]−4m1(2+4m2+s2)s3

8s2+s3(8+s3)

+
4
[

−3m2

2
−3m2(2+s2)+(2+s2)(6+s2)

]

s3+(22+7s2)s
2

3
+2s3

3
−8m2

1
(4+s3)

8s2+s3(8+s3)

]

ǫ2

+
4
(

−32m2

1
+4m1(2m2−s3−4)(s3−4)+(4−2m2+s3)

2(−2+s2+2s3)
)

8s2+s3(8+s3)

}

. (6.49)
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Field Multiplicity R0-charge U(1)B1 U(1)B2 U(1)F1 U(1)F2

X12 pN2 0 0 −1 1 0

X23 (p+ q − 1)N2 2 1 2 0 0

X34 N2 0 −p −p− q 0 1

X45 N2 0 p p+ q − 1 0 −1

X51 (p− q)N2 0 −1 0 −1 0

X24 N2 2 1− p 2− p− q 0 1

X31 (q − 1)N2 0 −1 −1 −1 0

X35 (p− 1)N2 0 0 −1 0 0

X41 N2 0 p− 1 p+ q − 1 −1 −1

X52 qN2 0 −1 −1 0 0

λ (2p+ 1)(N2 − 1) 1 0 0 0 0

Table 2. The field content of the Xp,q quiver theories.

Extremizing this with respect to ǫ1, ǫ2 then gives the on-shell central charge. For example,

setting the flavour twist parameters s2 = 0 = s3, we obtain (again for X2,1)

csugra =
48(g − 1)N2m1

[

(2m2
1 + 7m1m2)(m2 − 1) + 2m2

2(3m2 − 4) + 2m1

]

m1[m1(2 +m1)− 12] +m1(4 + 3m1)m2 + (3m1 − 2)m2
2 +m3

2

. (6.50)

It is straightforward to also compute the off-shell (and hence on-shell) R-charges Ra, a =

1, . . . , 5, although we do not record the formulae here.

Dual field theory and c-extremization. We next move on to the dual field theory

computation, with the four-dimensional Xp,q quiver gauge theories wrapped on Σg. The

theory has SU(N)2p+1 gauge group and the field content is summarized in table 2. There

are now two baryonic symmetries, U(1)BI
, I = 1, 2, associated to the two non-trivial three-

cycles, and two (non R-symmetry) flavour symmetries U(1)Fi
, i = 1, 2, corresponding to

U(1) isometries under which the holomorphic volume form Ω(3,0) is uncharged. Once again

R0 is a simple fiducial charge to be used in the c-extremization procedure. The topological

twist is along the generator

Ttop = f1TF1 + f2TF2 +B1TB1 +B2TB2 +
κ

2
RR0 , (6.51)

with the trial R-charge being

Ttrial = TR0 + ǫB1TB1 + ǫB2TB2 + ǫ1TF1 + ǫ2TF2 . (6.52)
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As in (6.49) we present the trial c-function only for the X2,1 case:

c(ǫB1 , ǫB2 , ǫ1, ǫ2)= 3N2η̄
{

2f2ǫ1+f2ǫ
2
1−8B1ǫ2+4f2ǫ2−2B1ǫ1ǫ2+2f2ǫ1ǫ2

+16B1ǫB1 −8f2ǫB1 +4B1ǫ1ǫB1 −2f2ǫ1ǫB1 −2B2[2ǫ1(2+ǫ2−ǫB1)−8ǫB1 +

+ǫ2(6+ǫB1)]+16B1ǫB2 −12f2ǫB2 +4B1ǫ1ǫB2 −4f2ǫ1ǫB2 +4B2(6+ǫ1−ǫ2)ǫB2

−2B1ǫ2ǫB2 −2f2ǫB1ǫB2 −2f2ǫ
2
B2

+f1[ǫ
2
2+2ǫ1(4+ǫ2)−8ǫB2 +2(ǫB1 +ǫB2)

2

−2ǫ2(−1+ǫB1 +2ǫB2)]+[2ǫ21+(ǫ2−2ǫB1)
2+ǫ1(ǫ2−4ǫB2)−6ǫ2ǫB2

+8ǫB1ǫB2 +6ǫ2B2
])κ

}

. (6.53)

We next extremize over both of the baryon mixing parameters ǫB1 , ǫB2 , by solving

∂c

∂ǫB1

= 0 =
∂c

∂ǫB2

, (6.54)

for ǫB1 , ǫB2 , and then substitute back into the trial c-function to obtain c = c(ǫ1, ǫ2). For

|κ| = 1 we then find, remarkably, this function exactly matches the off-shell trial central

charge computed in gravity (6.49), after making the appropriate simple change of basis

B1 =
1

2
(2−m1 + s2)κ , B2 = −

1

2
(2 +m2 + s2)κ ,

f1 = −
1

2
(2 + s2)κ , f2 = −

1

2
(2p+ s3)κ . (6.55)

Moreover, the trial R-charges Ra, a = 1, . . . , 5, in field theory and gravity also match

off-shell, for general m1,m2, s2, s3, as a function of ǫ1, ǫ2, after resolving the baryon mix-

ing (6.54) in field theory. Specifically

Ra = R[Xa]N , a = 1, . . . , 5 , (6.56)

where (X1, X2, X3, X4, X5) ≡ (X51, X12, X23, X34, X45), and the Xij are the bifundamental

fields in the Xp,q quiver, as listed in table 2 above. Furthermore, using the formulae for

these field theory R-charges in (6.36), we obtain the change of variables given in (6.48).

As we saw in the Y p,q examples, the simple change of basis given in (6.55) can again

be obtained by solving

Ma = −η̄ t[Xa]N , (6.57)

where the Ma are the fluxes on the gravity side, given in (6.46), (6.47), and t[Xa] are the

charges of the bosonic fields (X1, X2, X3, X4, X5) ≡ (X51, X12, X23, X34, X45) in the quiver

gauge theory with respect to the background gauge field given in (6.51).

7 Explicit supergravity solutions for Y p,q case

In the previous section we matched the central charge and R-charges on the gravity side,

obtained using our new toric geometry formalism, with those from field theory using c-

extremization. As anticipated in section 4.4, this is a priori a formal matching.

On the gravity side, we have shown how to calculate the central charge and R-charges

for a class of AdS3 × Y7 solutions of type IIB supergravity, for Y7 of the fibred form Y5 →֒
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Y7 → Σg, using the toric data of Y5, provided that the solution actually exists. In particular,

having computed the central charge and R-charges for particular toric data and twisting

over Σg, one should then check that these quantities are positive. From the field theory side,

the c-extremization procedure will give the correct central charge and R-charges, provided

that the putative SCFT field theory, obtained from compactifying the quiver gauge theory

with particular topological twists, actually exists. It is certainly possible that in some cases

the compactified field theory flows to some other behaviour in the IR. However, demanding

positivity of the central charge and R-charges places strong necessary conditions for the

existence of the SCFT fixed point, and it is natural to anticipate that, generically, for the

class of field theories we are studying, these also provide sufficient conditions.

An additional point to highlight on the gravity side is that our geometric results used

the toric data for Kähler cones over Y5, C(Y5), specified by the inward pointing normal

vectors ~va associated with the convex polyhedral cone. However, as discussed in [3], we can

also use our geometric results, at least formally, for complex cones C(Y5) with a holomorphic

(3, 0)-form and U(1)3 action which do not admit any compatible Kähler cone metric. In

this case we can still define vectors ~va ∈ Z3, which define the d complex codimension one

submanifolds where the action of one of the U(1) ⊂ U(1)3 degenerates. These examples

were called “non-convex” toric cones in [3], since the {~va} do not define a convex polyhedral

cone. It would also be interesting to put our calculations on a firmer geometric footing for

this class.

To illustrate several of these issues, we recall the example of the quiver gauge theory

for the Y p,q 3-fold singularities compactified on T 2 with baryon flux only. From the gravity

side, we discussed this example just below equation (6.14) (it is the special case with

g = 1 and n2 = 0). For toric Y p,q, which necessarily have p > q > 0, this case is in fact

obstructed, as proved in [3]. Specifically, the critical R-symmetry vector ~b lies outside the

Reeb cone, cf. the discussion in section 4.4. However, if we consider non-convex toric cones

with q > p > 0 then, as we noted around equation (6.21), we obtain results using our toric

formula which agree with the known explicit supergravity solutions already constructed

in [19]. On the field theory side, as already discussed in [3], we see from (6.43) that the

quiver gauge theories for the Y p,q 3-fold singularities, with p > q > 0 cannot flow to a

SCFT in the IR since the R-charges would be negative. Furthermore, this also shows that

there is no obvious candidate field theory that is dual to the explicit supergravity solutions

associated with the non-convex toric geometries with q > p > 0.

The above discussion emphasizes that with our current understanding, it is illumi-

nating to compare the formal matching we have demonstrated in this paper with explicit

supergravity solutions. In section 5 we discussed the compactification of toric quiver gauge

theories on a Riemann surface with genus g > 1 and a universal twist. In this case we

know that the explicit supergravity solution exists (i.e. they are not obstructed), and the

agreement with c-extremization in the field theory provides strong evidence that the field

theory does indeed flow to a SCFT. In the remainder of this section we will consider two

further examples, for which an explicit supergravity solution exists. The first is the Y p,0

theories compactified on a Riemann surface with g > 1, where one adds baryonic flux to

the universal twist, for which an explicit supergravity solution was found in [15, 19], and
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we find a consistent picture analogous to the example of the universal twist. The second

example we consider is associated with Y p,q fibred over S2, and this example is analogous

to the T 2 example discussed in the previous paragraph. Applying c-extremization to the

quiver gauge theory associated with Y p,q with p > q > 0 does not lead to physical results

for the central charge and R-charges. On the other hand, there is a supergravity solu-

tion associated with a non-convex toric cone with q > p > 0, whose central charge and

R-charges agree with the calculations we obtained in (6.7) and (6.8).

In the two explicit AdS3 × Y7 solutions of the form (2.1) that we discuss, the central

charge was calculated using the formula (equivalent to (2.13), (2.14))

csugra =
3L8

16π6ℓ8sg
2
s

∫

Y7

e−2Bvol7 , (7.1)

where the volume form is with respect to ds27 . The R-charges were not calculated, but

we do so here. When Y7 is a fibration of a Y5 over a Riemann surface Σg, the holographic

R-charges can be computed via the formula (equivalent to (4.47)) [11]

Ra = R[Sa] =
L4

8π3ℓ4sgs

∫

Sa

e−Bvol(Sa) , (7.2)

where Sa are supersymmetric three-manifolds in Y7, and the volume form vol(Sa) is com-

puted with respect to the pull-back of ds27.

7.1 Y p,0 fibred over Σg>1

In the AdS3 × Y7 solutions discussed12 in section 3.1 of [19], Y7 has a six-dimensional

transverse Kähler metric which consists of a product of three Kähler-Einstein metrics,

Σg×S2
1 ×S2

2 , with the genus g > 1. At a fixed point on Σg one finds a copy of T 1,1 = Y 1,0,

so that the total space is a fibration of Y 1,0 over Σg. A simple supersymmetry-preserving

quotient by Zp yields the total space [16]

Y p,0 →֒ Y7 → Σg . (7.3)

In [16] the solution was identified as a holographic dual to the Y p,0 quiver theory compact-

ified on Σg with a particular baryonic twist, and the gravitational central charge computed

with (7.1) was shown to agree exactly with the extremized c-function in the field theory.

Below, our aim will be to illustrate the agreement of the explicit solution with results

that we obtained in section 6.1, valid for Y p,q →֒ Y7 → Σg, with arbitrary baryon and

(SU(2)-preserving) flavour fluxes. We will additionally check that the R-charges, obtained

in section 6.1, match with the R-charges computed using (7.2), as expected. We note that

the solution is specified13 by a rational number v ≥ 1 in addition to p.

To make the comparison, we have to give relations between the parameters N,Ma, ni
used in section 6 to the integer fluxes NA in the explicit supergravity solution. This can

12They were also discussed earlier in the context of AdS3 solutions of D = 11 supergravity: see section 6

of [15] with B6 = T 2 ×KE+
2 ×KE+

2 and c1 = 0.
13One can check that the solution presented in section 6 of [19] and that presented in section 3.3 of [16]

coincide, upon identifying the parameters as l1 = s
t
= − 1

v+1
, and −

(

t
h
N
)

DGK
= NBBC ≡ N .
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be determined by scrutinizing the five-cycles used to perform flux quantization in [15]. In

particular, three natural five-cycles D1, D2, D3 were discussed, subject to the homology

relation [D1] + [D2] + (1 − g)[D3] = 0, corresponding to U(1) fibrations over four-cycles

Σg ×S2
1 , Σg ×S2

2 , and S2
1 ×S2

2 , respectively. Since the five-cycle obtained by fixing a point

on Σg is a copy of Y p,0, the flux through this can be identified with the total number of

D3-branes, that we denote by N , namely

N(D3) = N . (7.4)

The two other fluxes are given by

N(D1) =
g − 1

v + 1
N , N(D2) =

v(g − 1)

v + 1
N . (7.5)

By examining the supergravity solution one can identify these fluxes with our Ma via

M1 = M3 = N(D1) , M2 = M4 = N(D2) , (7.6)

and inserting these into (4.36) we further obtain

n1 = 2− 2g , n2 = n3 = p(1− g) , (7.7)

where we used the Y p,q toric data (6.1), with q = 0. Furthermore, from (6.2), (6.3) we can

make the identification

m =
1

1 + v
, s = −p . (7.8)

Having made these identification we can now compare the supergravity central charge

and R-charges, computed using the explicit metric, with the results of the analysis in

section 6.1. After substituting (7.8) into the general expression for the central charge (6.7),

we obtain

csugra = 6p(g − 1)
v2 + v + 1

(v + 1)2
N2 , (7.9)

in agreement with the result computed in [15, 16]. It is straightforward to compute the R-

charges from the explicit solution using (7.2), finding that they agree with those presented

in (6.8) after substituting (7.8), namely

R1 = R3 =
v

v + 1
N , R2 = R4 =

1

v + 1
N . (7.10)

Notice that for v = 1 the solution coincides with the universal twist of Y p,0, and

both (7.9), (7.10) reduce to their correct values.

In section 6.1 we also showed that the trial central charge and R-charges agree (even

off-shell) with the corresponding quantities computed employing c-extremization. In par-

ticular, with (7.8) the twisting parameters B and f2 given in (6.32) take the values

B = − 1
2p(v+1) and f2 = 0. This indicates that there are additional supergravity solu-

tions associated with the more general values of B and f2. Also, recall that the baryon

twisting parameter B that we defined in section 6.1 does not coincide with the parameter

“B” defined in [16]. In particular, in the basis we have chosen the baryon twist parameter

does not vanish for the universal twist v = 1, while that in [16] does vanish.
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7.2 Y p,q fibred over Σg=0

The explicit AdS3 × Y7 solutions presented in [21] have a Y7 that is constructed14 as a

fibration over a positively curved Kähler-Einstein four-manifold. In particular, taking the

KE4 to be S2 × S2, the total space Y7 is toric, and it may also be viewed as the fibration

of a toric Y5 over either of the two Riemann spheres, Σ0 = S2. The fibre manifold, Y5, at a

fixed point on the two-sphere base, Σ0, has topology S2×S3, isometry group SU(2)×U(1)2

and is labelled by two coprime integers p, q > 0 (which were labelled p, q in [21]).

For KE4 = S2 × S2 the integers (M,m) in [21] take the values M = 8, m = 2. Now,

if we fix a point on Σ0 = S2 in [21], the topological construction of the metrics in [21]

is very similar to that in [17], with a simple re-labelling of the parameters. In particular

the (2π)-periodic coordinate ψ in the two constructions is the same and together with the

coordinate y these form a (topologically trivial) S2 bundle over S2, that was denoted B4

in [17]. One then constructs a circle bundle over this four-dimensional base, with Chern

numbers (in the notation of [17]) p and q. In particular, p is the Chern number over the

fibre S2. From equation (12) of [21] we thus immediately read off

q = p . (7.11)

A careful comparison15 of the basis of two-cycles C1 and C2 in B4 ≃ S2×S2 (which should

not be confused with the KE4 = S2 × S2) leads to identify the parameter p in [21] with

p = −p+ q . (7.12)

Note that since p > 0, q > 0 in the supergravity solutions of [17], we now crucially have

q > p, which is the opposite inequality to the Sasaki-Einstein Y p,q metrics. Thus, similar to

the case discussed in [3], we cannot strictly compare with our general toric formalism, since

the toric data (6.1) when q > p, that are relevant for the supergravity solutions of [21], do

not form a convex set. However, we can formally apply our toric formulas and, remarkably,

we find precise agreement with the supergravity results.

To make the comparison we need to relate the parameters N , Ma, ni used in section 6

to the integer fluxes NA in the supergravity solution of [21]. Now the supergravity solutions

have H5(Y7;Z) = 2, but the quantization conditions in [21] were described in terms of four

five-cycles D0, D̃0, D1, D2 subject to linear relations. Here D0 and D̃0 denote the five-

cycles arising from two sections of the fibration over KE4 = S2 × S2, while D1, D2 are the

five-cycles corresponding to the fibration over the generating two-cycles in KE4 = S2×S2.

Since the five-cycle obtained by fixing a point on Σ0 = S2 is a copy of Y p,q (with

q > p > 0) the associated flux through this cycle can be identified with the total number

14This construction is analogous to the one for Sasaki-Einstein seven-manifolds described in [22, 23].
15Recall that in the Y p,q construction of [17], the four-dimensional base B4 is topologically S2 ×S2, with

generating two-cycles C1 and C2. These are related to the north and south pole sections S1 and S2 of the

fibre S2 via 2C1 = S1 − S2, 2C2 = S1 + S2. One easily checks that the Chern numbers over S1 and S2

are p+ q > 0 and −p+ q < 0. This then matches with the Chern numbers p and q over C1 and C2, using

the above relation between cycles. See also [11] for a similar comparison of parameters between different

versions of Y p,q manifolds.
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of D3-branes, N . Therefore, from (18) and (19) of [21] we have,16 in the notation here (i.e.

after using (7.11), (7.12)),

N(D1) = N(D2) =
n

h
p = N , (7.13)

while the two remaining fluxes given in (18) of [21], in our notation, become

N(D0) = −
2N

p
(p+ q) , N(D̃0) = −

2N

p
(−p+ q) . (7.14)

Further examination of the supergravity solution allows us to identify these fluxes with our

Ma via

M1 = N(D0) , M2 = M4 = N , M3 = −N(D̃0) . (7.15)

Inserting these into (4.36) we also obtain

n1 = 2− 2g = 2 , n2 = n3 = p− q , (7.16)

and comparing (7.15) with (6.2), (6.3) implies that

m =
2

p
(p+ q) , s = q − p . (7.17)

We can now compare the supergravity central charge and R-charges computed using

the explicit metric with the results of the analysis in section 6.1. The central charge for

the explicit supergravity solutions given in eq. (1) of [21] reads, in the notation here,

csugra =
18p(q − p)(p+ q)N2

p2 + 3q2
. (7.18)

One can check that this precisely agrees with the toric calculation (6.7) after using (7.17).

It is also straightforward to compute the R-charges (7.2) from the explicit supergravity

solution (which was not done in [21]), finding that they also agree with those presented

in (6.8), namely

R1 =
(3q − p)(p+ q)N

p2 + 3q2
,

R2 = R4 =
2p2N

p2 + 3q2
,

R3 =
(q − p)(p+ 3q)N

p2 + 3q2
. (7.19)

Notice that csugra and R3 are positive if and only if q > p, associated with the explicit

supergravity solutions. As we remarked earlier, the derivation of our formulas assumed

that the toric data of the Y5 fibred over S2 forms a convex set, which does not hold

when q > p. Nevertheless, we find perfect agreement with the explicit metric in this case.

Something similar was also seen for different examples in [3], which strongly suggests that

16Here we have also set the two integers na of [21] to unity. This follows by noting that since the canonical

bundle of S2 × S2 is O(−2,−2) and m = 2, the line bundle N of [21] is O(−1,−1) and hence na = 1.
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our general toric formulas continue to hold outside the regime of validity of their derivation.

It would be interesting to explore this further.

In section 6.1 we also showed that the trial central charge and R-charges agree (even off-

shell) with the corresponding quantities computed employing c-extremization in the dual

four-dimensional quiver gauge theories reduced on Σ0. In fact, this matching holds also by

formally taking q > p in the trial c-function of the field theory. In this case, with (7.17), the

twisting parameters B and f2 given in (6.32) take the values B = 1
p and f2 = 0. Since in the

field theory there is no reason to assume the baryon and flavour fluxes to be fixed to any par-

ticular values, we are led to conjecture that there exist supergravity solutions generalizing

the one we discussed here, corresponding to Y p,q fibred over Σ0 = S2 with arbitrary twisting

parameters m and s (equivalently arbitrary values of B and f2, consistent with (6.32)).

8 Discussion

In this paper we have elaborated on the extremal problem recently formulated in [3],

which was proposed as a geometric dual to the procedure of c-extremization [1, 2] for two-

dimensional (0, 2) SCFTs. By analogy with the geometric dual to a-maximization [24] put

forward in [7], it was shown in [3] that the R-symmetry Killing vector field characterizing

the class of odd-dimensional “GK geometries” Y2n+1 considered in [5] may be determined

by extremizing a function that depends only on certain global, topological data, subject

to some constraints. In dimensions n = 3 and n = 4, these geometries arise in the context

of supersymmetric AdS3 × Y7 solutions of type IIB supergravity, and AdS2 × Y9 solutions

of eleven-dimensional supergravity, respectively. In these cases, the extremal problem de-

termines necessary conditions to solve a curvature condition arising from the supergravity

equations of motion, and the constraints are determined by the Dirac quantization condi-

tions of the fluxes through cycles in Y2n+1.

Focusing on the case n = 3, in this paper we developed a formalism that allows one to

efficiently compute all the quantities necessary for implementing the extremization problem,

when the seven-dimensional manifold Y7 is a fibration of a toric Y5 over a Riemann surface

Σg of genus g. As we have explained, the formulas that we derived are direct extensions

of the corresponding expressions for toric Sasakian manifolds, presented in [7]. Similarly

to [7], these formulas allow one to extract considerable information about the solutions,

without their explicit knowledge. We have illustrated in a number of explicit examples

that the geometric quantities calculated using our formalism agree spectacularly with the

corresponding quantities computed implementing c-extremization in the dual field theories,

or extracted from the explicit supergravity solutions, when these are available.

The results presented here open the way to a number of interesting research directions.

An obvious extension is to generalize our formalism to toric geometries associated with di-

mension n > 3. We expect that all the information necessary to implement the relevant

extremal problem can still be encoded in a master volume V , depending on the toric data

~va ∈ Zn, the R-symmetry vector ~b ∈ Rn, and the Kähler parameters λa, with the key for-

mulas (1.4)–(1.7) generalizing straightforwardly. Such an extension will allow one to study

generic AdS3 × Y7 solutions of type IIB supergravity with Y7 toric, which may provide
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important clues to identifying the dual SCFTs, including for the known supergravity solu-

tions [15, 21, 25]. In addition, such an extension can be used to study AdS2 × Y9 solutions

of eleven-dimensional supergravity, where Y9 is toric or when Y9 is a fibration of toric Y7
over a Riemann surface Σg. This latter case is particularly interesting as it corresponds

to taking the N = 2, d = 3 SCFTs dual to AdS4 × Y7 solutions, arising from placing M2-

branes at the singular apex of a toric Calabi-Yau 4-fold cone, and then reducing them on

Σg. Some explicit supergravity solutions of this type were studied in [26]. From a technical

point of view, a simpler and more immediate generalisation of the results of this paper is to

consider Y2n+1 GK geometries with n > 3 which are fibrations of a toric Y5 manifold over

a Kähler-Einstein manifold of dimension 2n − 4. This would include AdS2 × Y9 solutions

of D = 11 supergravity with Y9 obtained as a toric Y5 fibred over a KE4 manifold.

Here we have provided some necessary conditions for the existence of GK metrics,

which have transverse Kähler geometries obeying the prescribed curvature condition (2.6).

While there are several infinite classes of explicit metrics that have been constructed [5, 15,

16, 19, 21, 25–29], it is manifestly clear that this direct approach is limited. As a simple

example, it is very unlikely that explicit metrics could ever be constructed analytically for

the examples discussed in section 6.2. Thus, as discussed in section 4.4, it is important to

extend our work in the direction of establishing sufficient conditions for the existence of

GK metrics, in the toric setting, analogous to the results for toric Sasaki-Einstein metrics

proved in [12]. A remarkable fact that has emerged from our work is that while our master

formula for the action is homogeneous of degree minus one in ~b, after implementing the

constraints it somewhat miraculously becomes a quadratic function of the two remaining

degrees of freedom. This implies that the critical R-symmetry vector is rational, namely Y7
are quasi-regular, and matches exactly the general expectation of the field theory analysis.

We conjecture that Y7 are always quasi-regular, including when they are not toric. We hope

that some of these challenges will be taken up by the mathematics community.

In all of the examples that we have analysed, the trial central charge function Z

associated to a (toric) geometry and the trial c-function of the dual two-dimensional (0, 2)

SCFT have been shown to agree off-shell. More specifically, in all the examples that

we have considered, in which the field theories arise from compactifying four-dimensional

SCFTs on a Riemann surface, the trial c-function depends on twisting parameters and

trial mixing parameters for all the global (abelian) symmetries, both flavour and baryonic.

On the other hand, from the geometric perspective, the function Z depends on the same

number of twisting parameters, related to quantized fluxes, but it has to be extremized

only over the flavour mixing parameters. We conjecture that after extremizing over the

baryonic directions, the trial c-function in the field theory will match off-shell with the

function Z . We expect that this should not be difficult to prove, using ideas similar

to [30] (see also [31, 32]). In particular, we have seen in examples that the dictionary

between the flavour trial parameters ǫ1, ǫ2 in the field theory and the free components of

the R-symmetry vector b2, b3 on the gravity side can be implemented through the relation

bi =
d

∑

a=1

viaR[Xa] , (8.1)
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where R[Xa] are the R-charges in the field theory evaluated at the critical values of the field

theory baryonic parameters. Furthermore, the dictionary between the field theory baryonic

and flavour twists BI and fi, respectively, can be related to the independent subset of the

fluxes Ma and the free geometric twists ni on the gravity side via

Ma = −η̄ t[Xa]N , (8.2)

where η̄ is given in (6.28) and t[Xa] are the charges of the basic fields in the quiver with re-

spect to the topological twist in the field theory. Using (4.36) an immediate corollary is that

η̄
∑

a

viat[Xa] = ni . (8.3)

One of the interesting novelties in our Z -extremization, compared to the results for

Sasakian geometry [7], is the appearance of the Kähler parameters λa in the problem.

Generically these are eliminated in terms of the five-form flux quantum numbers Ma, which

specify the dual (0, 2) theory. Specifically, they are related to the baryonic twist parameters

BI . On the other hand, in the field theory c-extremization the trial central charge is also

a function of baryon mixing parameters ǫBI
. In our geometric formulation there is no

analogue of these variables ǫBI
, and this is why we must extremize over these variables

in field theory before matching to an off-shell Z in gravity. However, this is perhaps

suggestive that the geometric extremal problem could be performed in an enlarged space.

The natural setting in which this formulation could arise is that of the “master space” of

four-dimensional quiver gauge theories [33]. If this is possible, one can also anticipate, for

example, that it will be possible to derive the master volume, that we discussed in this

paper, from a limit of an index-character defined on the master space, extending the known

results in the Sasakian setting [8].
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