4,797 research outputs found

    Numerical modelling of the classical nova outburst

    Get PDF
    A mechanism is described that promises to explain how nova outbursts take place on white dwarf of 1 solar mass or less and for accretion rates of 4 x 10 to the -10 solar mass/yr or greater

    Thermal conductivity, electrical resistivity, and thermopower of aerospace alloys from 4 to 300 K. 6: Fe-22Cr-13Ni-5Mn stainless steel

    Get PDF
    The equipment and techniques for determining the thermal conductivity, electrical resistivity Lorenz ratio, and thermopower characteristics of Fe-22Cr-13Ni-5Mn stainless steel are discussed. The dimensions of the specimen and its preparation are described. The experimental data are represented by arbitrary functions over the entire range and smooth tables are generated from these functions

    Studies of hydrodynamic events in stellar evolution. 3: Ejection of planetary nebulae

    Get PDF
    The dynamic behavior of the H-rich envelope (0.101 solar mass) of an evolved star (1.1 solar mass) as the luminosity rises to 19000 solar luminosity during the second ascent of the red giant branch. For luminosities in the range 3100 L 19000 solar luminosity the H-rich envelope pulsates like a long-period variable (LPV) with periods of the order of a year. As L reaches 19000 solar luminosity, the entire H-rich envelope is ejected as a shell with speeds of a few 10 km/s. The ejection occurs on a timescale of a few LPV pulsation periods. This ejection is associated with the formation of a planetary nebula. The computations are based on an implicit hydrodynamic computer code. T- and RHO-dependent opacities and excitation and ionization energies are included. As the H-rich envelope is accelerated off the stellar core, the gap between envelope and core is approximated by a vacuum, filled with radiation. Across the vacuum, the luminosity is conserved and the anisotropy of the radiation is considered as well as the solid angle subtended by the remnant star at the inner surface of the H-rich envelope. Spherical symmetry and the diffusion approximation are assumed

    Thermal conductivity, electrical resistivity, and thermopower of aerospace alloys from 4 to 300 K. 3: Annealed Inconel 718

    Get PDF
    Determination of thermal conductivity, electrical resistivity, Lorentz ratio, and thermopower for annealed specimen of Inconel 718 at temperatures from 4 to 300

    Thermal conductivity of austenitic stainless steel, SRM 735, from 5 to 280 K

    Get PDF
    Thermal conductivity and electrical resistivity measurements were conducted on two lots of an austenitic stainless steel. Electrical resistivity measurements were performed on the second lot, both before and after the material was hot-swaged and reannealed to a size 1/10 the original diameter. These measurements indicate that this steel can be swaged and reannealed without an appreciable change in thermal conductivity. Electrical resistivity measurements as well as direct thermal conductivity measurements on several specimens from both lots indicate a material variability in these lots of less than 1% in thermal conductivity

    hagis, an R Package Resource for Pathotype Analysis of Phytophthora sojae Populations Causing Stem and Root Rot of Soybean

    Get PDF
    Phytophthora sojae is a significant pathogen of soybean worldwide. Pathotype surveys for Phytophthora sojae are conducted to monitor resistance gene efficacy and determine if new resistance genes are needed. Valuable measurements for pathotype analysis include the distribution of susceptible reactions, pathotype complexity, pathotype frequency, and diversity indices for pathotype distributions. Previously the Habgood-Gilmour Spreadsheet (HaGiS), written in Microsoft Excel, was used for data analysis. However, the growing popularity of the R programming language in plant pathology and desire for reproducible research made HaGiS a prime candidate for conversion into an R package. Here we report on the development and use of an R package, hagis, that can be used to produce all outputs from the HaGiS Excel sheet for P. sojae or other gene-for-gene pathosystem studies

    Tests of hypotheses and related problems in 2X2 tables

    Full text link
    Thesis (M.A.)--Boston Universit

    Polarization Diagnostics for Cool Core Cluster Emission Lines

    Get PDF
    The nature of the interaction between low-excitation gas filaments at ~104 K, seen in optical line emission, and diffuse X-ray emitting coronal gas at ~107 K in the centers of galaxy clusters remains a puzzle. The presence of a strong, empirical correlation between the two gas phases is indicative of a fundamental relationship between them, though as yet of undetermined cause. The cooler filaments, originally thought to have condensed from the hot gas, could also arise from a merger or the disturbance of cool circumnuclear gas by nuclear activity. Here, we have searched for intrinsic line emission polarization in cool core galaxy clusters as a diagnostic of fundamental transport processes. Drawing on developments in solar astrophysics, direct energetic particle impact induced polarization holds the promise to definitively determine the role of collisional processes such as thermal conduction in the ISM physics of galaxy clusters, while providing insight into other highly anisotropic excitation mechanisms such as shocks, intense radiation fields, and suprathermal particles. Under certain physical conditions, theoretical calculations predict of the order of 10% polarization. Our observations of the filaments in four nearby cool core clusters place stringent upper limits ( 0.1%) on the presence of emission line polarization, requiring that if thermal conduction is operative, the thermal gradients are not in the saturated regime. This limit is consistent with theoretical models of the thermal structure of filament interfacesPeer reviewe

    Thermonuclear runaways in thick hydrogen rich envelopes of neutron stars

    Get PDF
    A Lagrangian, fully implicit, one dimensional hydrodynamic computer code was used to evolve thermonuclear runaways in the accreted hydrogen rich envelopes of 1.0 Msub solar neutron stars with radii of 10 km and 20 km. Simulations produce outbursts which last from about 750 seconds to about one week. Peak effective temeratures and luninosities were 26 million K and 80 thousand Lsub solar for the 10 km study and 5.3 millison and 600 Lsub solar for the 20 km study. Hydrodynamic expansion on the 10 km neutron star produced a precursor lasting about one ten thousandth seconds
    • …
    corecore