412 research outputs found

    Potential Changes to the Cubitt Creek System After Dredging

    Get PDF
    Dredging is the process of removing sediments from beneath the water\u27s surface to increase the depth of the area. Many times, dredging is used to deepen navigational channels for boats in inlets and bays, control river flow, and environmental remediation of contaminated sediments. Sustainable dredging is when the sediments that have been dredged are used to replenish beaches. This method saves money, minimizes ecological impact, saves capacity at deposit sites, and can be used for habitat restoration

    Why I Left The Roman Catholic Church

    Get PDF
    https://digitalcommons.acu.edu/crs_books/1106/thumbnail.jp

    Job satisfaction mediates the association between perceived disability and work productivity in migraine headache patients

    Get PDF
    Migraine headache is the cause of an estimated 250,000,000 lost days from work or school every year and is often associated with decreased work productivity. The aim of this cross-sectional study was to assess the relationship between perceived disability, job satisfaction and work productivity in patients affected by chronic migraineurs. Participants were 98 consecutive adult outpatients admitted to the Regional Referral Headache Centre of the Sant’Andrea Hospital in Rome, Italy. Patients were administered the Italian Perceived Disability Scale, The Quality of Life Enjoyment and Satisfaction Questionnaire-Work Subscale and The EndicottWork Productivity Scale. Perceived disability is significantly associated with job satisfaction and work productivity. Job satisfaction is significantly related to work productivity and mediates the association between perceived disability and work productivity in patients affected by chronic migraineurs. Our results confirm that patients suffering from migraine headaches who have negative perceptions © 2019 by the authors. Licensee MDPI, Basel, Switzerland

    Docosahexaenoic acid lowers cardiac mitochondrial enzyme activity by replacing linoleic acid in the phospholipidome

    Get PDF
    Cardiac mitochondrial phospholipid acyl chains regulate respiratory enzymatic activity. In several diseases, the rodent cardiac phospholipidome is extensively rearranged; however, whether specific acyl chains impair respiratory enzyme function is unknown. One unique remodeling event in the myocardium of obese and diabetic rodents is an increase in docosahexaenoic acid (DHA) levels. Here, we first confirmed that cardiac DHA levels are elevated in diabetic humans relative to controls. We then used dietary supplementation of a Western diet with DHA as a tool to promote cardiac acyl chain remodeling and to study its influence on respiratory enzyme function. DHA extensively remodeled the acyl chains of cardiolipin (CL), mono-lyso CL, phosphatidylcholine, and phosphatidylethanolamine. Moreover, DHA lowered enzyme activities of respiratory complexes I, IV, V, and I+III. Mechanistically, the reduction in enzymatic activities were not driven by a dramatic reduction in the abundance of supercomplexes. Instead, replacement of tetralinoleoyl-CL with tetradocosahexaenoyl-CL in biomimetic membranes prevented formation of phospholipid domains that regulate enzyme activity. Tetradocosahexaenoyl-CL inhibited domain organization due to favorable Gibbs free energy of phospholipid mixing. Furthermore, in vitro substitution of tetralinoleoyl-CL with tetradocosahexaenoyl-CL blocked complex-IV binding. Finally, reintroduction of linoleic acid, via fusion of phospholipid vesicles to mitochondria isolated from DHA-fed mice, rescued the major losses in the mitochondrial phospholipidome and complexes I, IV, and V activities. Altogether, our results show that replacing linoleic acid with DHA lowers select cardiac enzyme activities by potentially targeting domain organization and phospholipid-protein binding, which has implications for the ongoing debate about polyunsaturated fatty acids and cardiac health

    The Renaissance of KRAS Targeting in Advanced Non-Small-Cell Lung Cancer: New Opportunities Following Old Failures

    Get PDF
    : Non-small cell lung cancer (NSCLC) represents the perfect paradigm of 'precision medicine' due to its complex intratumoral heterogeneity. It is truly characterized by a range of molecular alterations that can deeply influence the natural history of this disease. Several molecular alterations have been found over time, paving the road to biomarker-driven therapy and radically changing the prognosis of 'oncogene addicted' NSCLC patients. Kirsten rat sarcoma (KRAS) mutations are present in up to 30% of NSCLC (especially in adenocarcinoma histotype) and have been identified decades ago. Since its discovery, its molecular characteristics and its marked affinity to a specific substrate have led to define KRAS as an undruggable alteration. Despite that, many attempts have been made to develop drugs capable of targeting KRAS signaling but, until a few years ago, these efforts have been unsuccessful. Comprehensive genomic profiling and wide-spectrum analysis of genetic alterations have only recently allowed to identify different types of KRAS mutations. This tricky step has finally opened new frontiers in the treatment approach of KRAS-mutant patients and might hopefully increase their prognosis and quality of life. In this review, we aim to highlight the most interesting aspects of (epi)genetic KRAS features, hoping to light the way to the state of art of targeting KRAS in NSCLC

    Early primary tumor response in metastatic RCC patients treated with immune checkpoint inhibitors-based combinations

    Get PDF
    Background: 25-30% of renal cell carcinoma presents with metastases (mRCC) at diagnosis. The activity of immune checkpoint inhibitor (ICI)-combinations on the primary tumor (PT) is debated. Patients andMethods: mRCC patients (pts) with PT who received first-line nivolumab plus ipilimumab (N/I) or pembrolizumab plus axitinib (P/A) were included. We investigated the early primary tumor response (EPTR) at the first radiological assessment. Results: 73 pts were included. The median early reduction of the PT longest diameter was 12.4% with P/A versus 6.2% with N/I (p = 0.42). We evaluated if the type of EPTR could affect the metastases response. Among pts with PT stable disease (SD), 8.3% had metastatic disease progression (PD) with P/A and 34.8% with N/I. Early PT partial response (PR) was associated with no metastatic PD with both N/I and P/A. The 2 pts with PT PD had also metastatic PD to P/A. Of the 3 PT with PD to N/I, 1 had metastatic SD and 2 PD. In the overall population, of the 94.1% without PT progression (PR+SD), 47.5% had metastatic PR, 35.6% SD, 16.9% PD. Conclusions: ICIs-combinations achieved an early PT PR in about 10-20%, without any complete responses. Only a small percentage of PT had an early PD, mainly associated with metastatic PD. However, among those PT without an early progression, metastatic PR can be achieved in approximately 50% of cases

    The Mitochondrial Ca(2+) Uniporter: Structure, Function, and Pharmacology.

    Get PDF
    Mitochondrial Ca(2+) uptake is crucial for an array of cellular functions while an imbalance can elicit cell death. In this chapter, we briefly reviewed the various modes of mitochondrial Ca(2+) uptake and our current understanding of mitochondrial Ca(2+) homeostasis in regards to cell physiology and pathophysiology. Further, this chapter focuses on the molecular identities, intracellular regulators as well as the pharmacology of mitochondrial Ca(2+) uniporter complex

    Mitochondrial Reactive Oxygen Species in Lipotoxic Hearts Induces Post-Translational Modifications of AKAP121, DRP1 and OPA1 That Promote Mitochondrial Fission

    Get PDF
    Rationale: Cardiac lipotoxicity, characterized by increased uptake, oxidation and accumulation of lipid intermediates, contributes to cardiac dysfunction in obesity and diabetes. However, mechanisms linking lipid overload and mitochondrial dysfunction are incompletely understood. Objective: To elucidate the mechanisms for mitochondrial adaptations to lipid overload in postnatal hearts in vivo. Methods and Results: Using a transgenic mouse model of cardiac lipotoxicity overexpressing long-chain acyl-CoA synthetase 1 in cardiomyocytes, we show that modestly increased myocardial fatty acid uptake leads to mitochondrial structural remodeling with significant reduction in minimum diameter. This is associated with increased palmitoyl-carnitine oxidation and increased reactive oxygen species (ROS) generation in isolated mitochondria. Mitochondrial morphological changes and elevated ROS generation are also observed in palmitate- treated neonatal rat ventricular cardiomyocytes (NRVCs). Palmitate exposure to NRVCs initially activates mitochondrial respiration, coupled with increased mitochondrial membrane potential and adenosine triphosphate (ATP) synthesis. However, long-term exposure to palmitate (\u3e8h) enhances ROS generation, which is accompanied by loss of the mitochondrial reticulum and a pattern suggesting increased mitochondrial fission. Mechanistically, lipid-induced changes in mitochondrial redox status increased mitochondrial fission by increased ubiquitination of A-kinase anchor protein (AKAP121) leading to reduced phosphorylation of DRP1 at Ser637 and altered proteolytic processing of OPA1. Scavenging mitochondrial ROS restored mitochondrial morphology in vivo and in vitro. Conclusions: Our results reveal a molecular mechanism by which lipid overload-induced mitochondrial ROS generation causes mitochondrial dysfunction by inducing post-translational modifications of mitochondrial proteins that regulate mitochondrial dynamics. These findings provide a novel mechanism for mitochondrial dysfunction in lipotoxic cardiomyopathy. 38 pp; includes supplemental materials

    MICU2, a Paralog of MICU1, Resides within the Mitochondrial Uniporter Complex to Regulate Calcium Handling

    Get PDF
    Mitochondrial calcium uptake is present in nearly all vertebrate tissues and is believed to be critical in shaping calcium signaling, regulating ATP synthesis and controlling cell death. Calcium uptake occurs through a channel called the uniporter that resides in the inner mitochondrial membrane. Recently, we used comparative genomics to identify MICU1 and MCU as the key regulatory and putative pore-forming subunits of this channel, respectively. Using bioinformatics, we now report that the human genome encodes two additional paralogs of MICU1, which we call MICU2 and MICU3, each of which likely arose by gene duplication and exhibits distinct patterns of organ expression. We demonstrate that MICU1 and MICU2 are expressed in HeLa and HEK293T cells, and provide multiple lines of biochemical evidence that MCU, MICU1 and MICU2 reside within a complex and cross-stabilize each other's protein expression in a cell-type dependent manner. Using in vivo RNAi technology to silence MICU1, MICU2 or both proteins in mouse liver, we observe an additive impairment in calcium handling without adversely impacting mitochondrial respiration or membrane potential. The results identify MICU2 as a new component of the uniporter complex that may contribute to the tissue-specific regulation of this channel.National Institutes of Health (U.S.) (GM0077465)National Institutes of Health (U.S.) (DK080261
    • …
    corecore