133 research outputs found
Ab-initio calculations for the beta-tin diamond transition in Silicon: comparing theories with experiments
We investigate the pressure-induced metal-insulator transition from diamond
to beta-tin in bulk Silicon, using quantum Monte Carlo (QMC) and density
functional theory (DFT) approaches. We show that it is possible to efficiently
describe many-body effects, using a variational wave function with an optimized
Jastrow factor and a Slater determinant. Variational results are obtained with
a small computational cost and are further improved by performing diffusion
Monte Carlo calculations and an explicit optimization of molecular orbitals in
the determinant. Finite temperature corrections and zero point motion effects
are included by calculating phonon dispersions in both phases at the DFT level.
Our results indicate that the theoretical QMC (DFT) transition pressure is
significantly larger (smaller) than the accepted experimental value. We discuss
the limitation of DFT approaches due to the choice of the exchange and
correlation functionals and the difficulty to determine consistent
pseudopotentials within the QMC framework, a limitation that may significantly
affect the accuracy of the technique.Comment: 13 pages, 9 figures, submitted to the Physical Review B on October 2
Il rilancio culturale dell'Italia nel mondo dopo la Seconda guerra mondiale: la reinvenzione di un'immagine (1945-1960)
La tesi ricostruisce gli sforzi della diplomazia culturale italiana per rilanciare l'immagine del Paese dopo la disfatta bellica della Seconda guerra mondiale. Secondo un criterio cronologico, vengono seguiti la ricostruzione e l'ampliamento della rete degli Istituti Italiani di Cultura, i rapporti con la SocietĂ Dante Alighieri e l'azione italiana all'interno dell'Unesco, prima occasione di collegamento fra l'Italia repubblicana e le Nazioni Unite. Vengono inoltre ricostruite le vicende dei principali enti di diritto pubblico, istituti e associazioni che si occupavano di relazioni culturali con l'estero, nei loro rapporti con l'amministrazione statale. Il termine ad quem Ăš il 1960, anno in cui, ospitando le Olimpiadi, l'Italia cercĂČ il riconoscimento internazionale dell'avvenuta ricostruzione e di un suo nuovo ruolo come protagonista del cosiddetto "miracolo economico"
A Modular BLE-Based Body Area Network Embedded into a Smart Garment for Rescuers Real-Time Monitoring in Emergency Scenarios
In this work, we present a prototype of a smart technical underwear for first responders involved in searchand-rescue operations, to be worn under the rescuerâs professional uniform. Polymer-based electrodes able to detect ECG and EMG signals, and organic transistor for joint angles estimation are embedded into the smart garment. The technical underwear implements a body sensor network of BLE nodes able to acquire, process in real-time and transmit electrophysiological and biomechanical data from the sensors to a custom Android app on the rescuerâs smartphone. The app geolocates the data by using the information of the GPS integrated into the smartphone and sends them to the control center for remote monitoring. The system features high modularity, as the rescuer can adopt a subset of sensors depending on the specific operative context, without
any app configuration
Spray-Coated, Magnetically Connectable Free-Standing Epidermal Electrodes for High Quality Biopotential Recordings
Acquiring biopotentials from the surface of the body is a common procedure both in the clinical practice and in non-clinical applications as sport and human- machine interfaces. To avoid bulky recording systems and to allow optimal long-term measurements, several tattooable solutions were recently developed, aiming at high-quality and imperceptible electrodes. However, a seamless connection with epidermal electrodes still represents one of the biggest challenges in this field. In this paper, we propose a simple and efficient approach for the fabrication of free-standing epidermal electrodes that can be contacted using small magnetic connectors, thus directly tackling this issue. The proposed electrodes are fabricated using a conductive ink based on poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) deposited by spray coating, and can be easily contacted using magnetic connectors without disrupting their conformability, thanks to the presence of ferrite nanoparticles integrated within the thin film itself. These electrodes have been successfully employed for the detection of different biopotentials, namely electrocardiogram, electromyogram and electro-oculogram, demonstrating excellent performances for the detection of biosignals from delicate body parts, such as the face, thus demonstrating the effectiveness of the approach for the development of a new generation of magnetically connectable epidermal electrodes for critical biopotentials monitoring
Physicochemical and biological ageing processes of (micro)plastics in the environment: a multi-tiered study on polyethylene
Pollution by plastic and microplastic impacts the environment globally. Knowledge on the ageing mechanisms of plastics in natural settings is needed to understand their environmental fate and their reactivity in the ecosystems. Accordingly, the study of ageing processes is gaining focus in the context of the environmental sciences. However, laboratory-based experimental research has typically assessed individual ageing processes, limiting environmental applicability. In this study, we propose a multi-tiered approach to study the environmental ageing of polyethylene plastic fragments focusing on the combined assessment of physical and biological processes in sequence. The ageing protocol included ultraviolet irradiation in air and in a range of water solutions, followed by a biofouling test. Changes in surface characteristics were assessed by Fourier transform infrared spectroscopy, scanning electron microscopy, and water contact angle. UV radiation both in air and water caused a significant increase in the density of oxidized groups (i.e., hydroxyl and carbonyl) on the plastic surface, whereby water solution chemistry influenced the process both by modulating surface oxidation and morphology. Biofouling, too, was a strong determinant of surface alterations, regardless of the prior irradiation treatments. All biofouled samples present (i) specific infrared bands of new surface functional groups (e.g., amides and polysaccharides), (ii) a further increase in hydroxyl and carbonyl groups, (iii) the diffuse presence of algal biofilm on the plastic surface, and (iv) a significant decrease in surface hydrophobicity. This suggests that biological-driven alterations are not affected by the level of physicochemical ageing and may represent, in real settings, the main driver of alteration of both weathered and pristine plastics. This work highlights the potentially pivotal role of biofouling as the main process of plastic ageing, providing useful technical insights for future experimental works. These results also confirm that a multi-tiered laboratory approach permits a realistic simulation of plastic environmental ageing in controlled conditions
Unfolding the interaction between microplastics and (trace) elements in water: A critical review
Plastic and microplastic pollution is an environmental and societal concern. The interaction of plastic with organic chemicals in the environment has attracted scientific interest. New evidences have highlighted an unexpectedly high affinity of environmental plastics also for metal ions. The degree and typology of plastic ageing (including from mechanical, UV and biological degradations) appear as a pivotal factor determining such an interaction. These earlier evidences recently opened a new research avenue in the plastic pollution area. This review is the first to organize and critically discuss knowledge developed so far. Results from field and laboratory studies of metal accumulation on plastic are presented and the environmental factors most likely to control such an interaction are discussed. On the light of this knowledge, a generalist conceptual model useful for building hypotheses on the mechanisms at stake and directing future studies was elaborated and presented here. Furthermore, all available data on the thermodynamics of the plastic-metal interaction obtained from laboratory experiments are inventoried and discussed here, highlighting methodological and technical challenges that can potentially affect cross-comparability of data and their relevance for environmental settings. Finally, insights and recommendations on experimental approaches and analytical techniques that can help overtaking current limitations and knowledge gaps are proposed
Selection of the optimal extraction protocol to investigate the interaction between trace elements and environmental plastic
The interaction between environmental plastic and trace elements is an issue of concern. Understanding their interaction mechanisms is key to evaluate the potential threats for the environment. To this regard, consolidating confidence in extraction protocols can help in understanding the amount of different species present on plastic surface, as well as the potential mobility of trace elements present inside the plastic matrix (e.g., additives). Here we tested the efficacy of different reagents to mimic the elemental phases bonded to meso- and microplastic in the environment, in relation to the grade of ageing and the polymer composition. Results showed that a relatively high portion of trace elements is bonded in a weak phase and that other phases abundant in other matrices (e.g., oxides and bonded to organic matter) are only present to a limited degree in the plastic samples. The comparison of different sample types highlighted the important role of plastic ageing in governing interactions with trace elements, while the polymer composition has a limited influence on this process. Finally, the future steps toward a tailored extraction scheme for environmental plastic are proposed.publishedVersio
Qualitative and Semiquantitative Parameters of 18F-FDG-PET/CT as Predictors of Malignancy in Patients with Solitary Pulmonary Nodule
This study aims to evaluate the reliability of qualitative and semiquantitative parameters of 18F-FDG PET-CT, and eventually a correlation between them, in predicting the risk of malignancy in patients with solitary pulmonary nodules (SPNs) before the diagnosis of lung cancer. A total of 146 patients were retrospectively studied according to their pre-test probability of malignancy (all patients were intermediate risk), based on radiological features and risk factors, and qualitative and semiquantitative parameters, such as SUVmax, SUVmean, TLG, and MTV, which were obtained from the FDG PET-CT scan of such patients before diagnosis. It has been observed that visual analysis correlates well with the risk of malignancy in patients with SPN; indeed, only 20% of SPNs in which FDG uptake was low or absent were found to be malignant at the cytopathological examination, while 45.45% of SPNs in which FDG uptake was moderate and 90.24% in which FDG uptake was intense were found to be malignant. The same trend was observed evaluating semiquantitative parameters, since increasing values of SUVmax, SUVmean, TLG, and MTV were observed in patients whose cytopathological examination of SPN showed the presence of lung cancer. In particular, in patients whose SPN was neoplastic, we observed a median (MAD) SUVmax of 7.89 (±2.24), median (MAD) SUVmean of 3.76 (±2.59), median (MAD) TLG of 16.36 (±15.87), and a median (MAD) MTV of 3.39 (±2.86). In contrast, in patients whose SPN was non-neoplastic, the SUVmax was 2.24 (±1.73), SUVmean 1.67 (±1.15), TLG 1.63 (±2.33), and MTV 1.20 (±1.20). Optimal cut-offs were drawn for semiquantitative parameters considered predictors of malignancy. Nodule size correlated significantly with FDG uptake intensity and with SUVmax. Finally, age and nodule size proved significant predictors of malignancy. In conclusion, considering the pre-test probability of malignancy, qualitative and semiquantitative parameters can be considered reliable tools in patients with SPN, since cut-offs for SUVmax, SUVmean, TLG, and MTV showed good sensitivity and specificity in predicting malignancy
A Periodic Transmission Line Model for Body Channel Communication
Body channel communication (BCC) is a technique for data transmission exploiting the human body as communication channel. Even though it was pioneered about 25 years ago, the identification of a good electrical model behind its functioning is still an open research question. The proposed distributed model can then serve as a supporting tool for the design, allowing to enhance the performances of any BCC system. A novel finite periodic transmission line model was developed to describe the human body as transmission medium. According to this model, for the first time, the parasitic capacitance between the transmitter and the receiver is assumed to depend on their distance. The parameters related to the body and electrodes are acquired experimentally by fitting the bio-impedentiometric measurements, in the range of frequencies from 1 kHz to 1 MHz, obtaining a mean absolute error lower than 4° and 30Ω for the phase angle and impedance modulus, respectively. The proposed mathematical framework has been successfully validated by describing a ground-referred and low-complexity system called Live Wire, suitable as supporting tool for visually impaired people, and finding good agreement between the measured and the calculated data, marking a ±3% error for communication distances ranging from 20 to 150 cm. In this work we introduced a new circuital approach, for capacitive-coupling systems, based on finite periodic transmission line, capable to describe and model BCC systems allowing to optimize the performances of similar systems
Role of Functional Neuroimaging with 123I-MIBG and 123I-FP-CIT in De Novo Parkinson's Disease: A Multicenter Study
Background: Parkinson's disease is a progressive neurodegenerative disorder, with incidence and prevalence rates of 8-18 per 100,000 people per year and 0.3-1%, respectively. As parkinsonian symptoms do not appear until approximately 50-60% of the nigral DA-releasing neurons have been lost, the impact of routine structural imaging findings is minimal at early stages, making Parkinson's disease an ideal condition for the application of functional imaging techniques. The aim of this multicenter study is to assess whether 123I-FP-CIT (DAT-SPECT), 123I-MIBG (mIBG-scintigraphy) or an association of both exams presents the highest diagnostic accuracy in de novo PD patients. Methods: 288 consecutive patients with suspected diagnoses of Parkinson's disease or non- Parkinson's disease syndromes were analyzed in the present Italian multicenter retrospective study. All subjects were de novo, drug-naive patients and met the inclusion criteria of having undergone both DAT-SPECT and mIBG-scintigraphy within one month of each other. Results: The univariate analysis including age and both mIBG-SPECT and DAT-SPECT parameters showed that the only significant values for predicting Parkinson's disease in our population were eH/M, lH/M, ESS and LSS obtained from mIBG-scintigraphy (p < 0.001). Conclusions: mIBG-scintigraphy shows higher diagnostic accuracy in de novo Parkinson's disease patients than DAT-SPECT, so given the superiority of the MIBG study, the combined use of both exams does not appear to be mandatory in the early phase of Parkinson's disease
- âŠ