304 research outputs found

    Observation of high-order quantum resonances in the kicked rotor

    Full text link
    Quantum resonances in the kicked rotor are characterized by a dramatically increased energy absorption rate, in stark contrast to the momentum localization generally observed. These resonances occur when the scaled Planck's constant hbar=(r/s)*4pi, for any integers r and s. However only the hbar=r*2pi resonances are easily observable. We have observed high-order quantum resonances (s>2) utilizing a sample of low temperature, non-condensed atoms and a pulsed optical standing wave. Resonances are observed for hbar=(r/16)*4pi r=2-6. Quantum numerical simulations suggest that our observation of high-order resonances indicates a larger coherence length than expected from an initially thermal atomic sample

    Time Scaling and Frequency Invariant Multiresolution Analysis of Ultrasonic NDE Signals

    Get PDF
    Nuclear power plant pipes are periodically inspected for possible cracks that occur in the heat-affected zones of welds. Intergranular stress corrosion cracks (IGSCC) are the most common type of cracks encountered particularly in stainless steel piping. Three major factors are required for the formation and propagation of IGSCCs, the tensile stress on the inner diameter of the weld region, a corrosive environment and a sensitized grain structure. When these flaws are not detected early enough, the consequences can be disastrous, and therefore the detection of IGSCCs is of significant interest to the nuclear industry

    Coherent Control and Entanglement in the Attosecond Electron Recollision Dissociation of D2+

    Full text link
    We examine the attosecond electron recollision dissociation of D2+ recently demonstrated experimentally [H. Niikura et al., Nature (London) 421, 826 (2003)] from a coherent control perspective. In this process, a strong laser field incident on D2 ionizes an electron, accelerates the electron in the laser field to eV energies, and then drives the electron to recollide with the parent ion, causing D2+ dissociation. A number of results are demonstrated. First, a full dimensional Strong Field Approximation (SFA) model is constructed and shown to be in agreement with the original experiment. This is then used to rigorously demonstrate that the experiment is an example of coherent pump-dump control. Second, extensions to bichromatic coherent control are proposed by considering dissociative recollision of molecules prepared in a coherent superposition of vibrational states. Third, by comparing the results to similar scenarios involving field-free attosecond scattering of independently prepared D2+ and electron wave packets, recollision dissociation is shown to provide an example of wave-packet coherent control of reactive scattering. Fourth, this analysis makes clear that it is the temporal correlations between the continuum electron and D2+ wave packet, and not entanglement, that are crucial for the sub-femtosecond probing resolution demonstrated in the experiment. This result clarifies some misconceptions regarding the importance of entanglement in the recollision probing of D2+. Finally, signatures of entanglement between the recollision electron and the atomic fragments, detectable via coincidence measurements, are identified

    Influence of asymmetry and nodal planes on high-harmonic generation in heteronuclear molecules

    Full text link
    The relation between high-harmonic spectra and the geometry of the molecular orbitals in position and momentum space is investigated. In particular we choose two isoelectronic pairs of homonuclear and heteronuclear molecules, such that the highest occupied molecular orbital of the former exhibit at least one nodal plane. The imprint of such planes is a strong suppression in the harmonic spectra, for particular alignment angles. We are able to identify two distinct types of nodal planes. If the nodal planes are determined by the atomic wavefunctions only, the angle for which the yield is suppressed will remain the same for both types of molecules. In contrast, if they are determined by the linear combination of atomic orbitals at different centers in the molecule, there will be a shift in the angle at which the suppression occurs for the heteronuclear molecules, with regard to their homonuclear counterpart. This shows that, in principle, molecular imaging, which uses the homonuclear molecule as a reference and enables one to observe the wavefunction distortions in its heteronuclear counterpart, is possible.Comment: 14 pages, 7 figures. Figs. 3, 5 and 6 have been simplified in order to comply with the arXiv size requirement

    SISTEM MONITORING MENGGUNAKAN KAMERA IP

    Get PDF
    RIFKI YUSUF SETIAWAN, 2010, SYSTEM MONITORING USING IP CAMERA. 3rd Diploma Program Computer Science, Faculty of Mathematics and Natural Science, Sebelas Maret University of Surakarta. The level of criminality was quite high, pushed the existence of the production of the monitoring system which gave the more effective safety.The main aim of this final report is to investigate the way of designing and developing program to monitor a room by using IP camera. The data were collected though experiment, observation, and library research. This study revealed that IP Camera was capable of monitoring room automatically and the software to manage the displayed was created by delphi 7 . Based on the findings, it could be concluded that we could monitor a room with IP camera. Keyword : IP camera, security, delphi 7, monitorin

    Entanglement and Timing-Based Mechanisms in the Coherent Control of Scattering Processes

    Full text link
    The coherent control of scattering processes is considered, with electron impact dissociation of H2+_2^+ used as an example. The physical mechanism underlying coherently controlled stationary state scattering is exposed by analyzing a control scenario that relies on previously established entanglement requirements between the scattering partners. Specifically, initial state entanglement assures that all collisions in the scattering volume yield the desirable scattering configuration. Scattering is controlled by preparing the particular internal state wave function that leads to the favored collisional configuration in the collision volume. This insight allows coherent control to be extended to the case of time-dependent scattering. Specifically, we identify reactive scattering scenarios using incident wave packets of translational motion where coherent control is operational and initial state entanglement is unnecessary. Both the stationary and time-dependent scenarios incorporate extended coherence features, making them physically distinct. From a theoretical point of view, this work represents a large step forward in the qualitative understanding of coherently controlled reactive scattering. From an experimental viewpoint, it offers an alternative to entanglement-based control schemes. However, both methods present significant challenges to existing experimental technologies

    Anomalous transport of a tracer on percolating clusters

    Full text link
    We investigate the dynamics of a single tracer exploring a course of fixed obstacles in the vicinity of the percolation transition for particles confined to the infinite cluster. The mean-square displacement displays anomalous transport, which extends to infinite times precisely at the critical obstacle density. The slowing down of the diffusion coefficient exhibits power-law behavior for densities close to the critical point and we show that the mean-square displacement fulfills a scaling hypothesis. Furthermore, we calculate the dynamic conductivity as response to an alternating electric field. Last, we discuss the non-gaussian parameter as an indicator for heterogeneous dynamics

    Probing multiphoton light-induced molecular potentials

    Get PDF
    The strong coupling between intense laser fields and valence electrons in molecules causes distortions of the potential energy hypersurfaces which determine the motion of the nuclei and influence possible reaction pathways. The coupling strength varies with the angle between the light electric field and valence orbital, and thereby adds another dimension to the effective molecular potential energy surface, leading to the emergence of light-induced conical intersections. Here, we demonstrate that multiphoton couplings can give rise to complex light-induced potential energy surfaces that govern molecular behavior. In the laser-induced dissociation of H2+, the simplest of molecules, we measure a strongly modulated angular distribution of protons which has escaped prior observation. Using two-color Floquet theory, we show that the modulations result from ultrafast dynamics on light-induced molecular potentials. These potentials are shaped by the amplitude, duration and phase of the dressing fields, allowing for manipulating the dissociation dynamics of small molecules
    • …
    corecore