9 research outputs found

    Structural basis of N-end rule substrate recognition in Escherichia coli by the ClpAP adaptor protein ClpS

    No full text
    In Escherichia coli, the ClpAP protease, together with the adaptor protein ClpS, is responsible for the degradation of proteins bearing an amino-terminal destabilizing amino acid (N-degron). Here, we determined the three-dimensional structures of ClpS in complex with three peptides, each having a different destabilizing residueā€”Leu, Phe or Trpā€”at its N terminus. All peptides, regardless of the identity of their N-terminal residue, are bound in a surface pocket on ClpS in a stereo-specific manner. Several highly conserved residues in this binding pocket interact directly with the backbone of the N-degron peptide and hence are crucial for the binding of all N-degrons. By contrast, two hydrophobic residues define the volume of the binding pocket and influence the specificity of ClpS. Taken together, our data suggest that ClpS has been optimized for the binding and delivery of N-degrons containing an N-terminal Phe or Leu

    Modification of PATase by L/F-transferase generates a ClpS-dependent N-end rule substrate in Escherichia coli

    No full text
    The N-end rule pathway is conserved from bacteria to man and determines the half-life of a protein based on its N-terminal amino acid. In Escherichia coli, model substrates bearing an N-degron are recognised by ClpS and degraded by ClpAP in an ATP-dependent manner. Here, we report the isolation of 23 ClpS-interacting proteins from E. coli. Our data show that at least one of these interacting proteinsā€”putrescine aminotransferase (PATase)ā€”is post-translationally modified to generate a primary N-degron. Remarkably, the N-terminal modification of PATase is generated by a new specificity of leucyl/phenylalanyl-tRNA-protein transferase (LFTR), in which various combinations of primary destabilising residues (Leu and Phe) are attached to the N-terminal Met. This modification (of PATase), by LFTR, is essential not only for its recognition by ClpS, but also determines the stability of the protein in vivo. Thus, the N-end rule pathway, through the ClpAPS-mediated turnover of PATase may have an important function in putrescine homeostasis. In addition, we have identified a new element within the N-degron, which is required for substrate delivery to ClpA

    Person-specific biomolecular coronas modulate nanoparticle interactions with immune cells in human blood

    Get PDF
    When nanoparticles interact with human blood, a multitude of plasma components adsorb onto the surface of the nanoparticles, forming a biomolecular corona. Corona composition is known to be influenced by the chemical composition of nanoparticles. In contrast, the possible effects of variations in the human blood proteome between healthy individuals on the formation of the corona and its subsequent interactions with immune cells in blood are unknown. Herein, we prepared and examined a matrix of 11 particles (including organic and inorganic particles of three sizes and five surface chemistries) and plasma samples from 23 healthy donors to form donor-specific biomolecular coronas (personalized coronas) and investigated the impact of the personalized coronas on particle interactions with immune cells in human blood. Among the particles examined, poly(ethylene glycol) (PEG)-coated mesoporous silica (MS) particles, irrespective of particle size (800, 450, or 100 nm in diameter), displayed the widest range (up to 60-fold difference) of donor-dependent variance in immune cell association. In contrast, PEG particles (after MS core removal) of 860, 518, or 133 nm in diameter displayed consistent stealth behavior (negligible cell association), irrespective of plasma donor. For comparison, clinically relevant PEGylated doxorubicin-encapsulated liposomes (Doxil) (74 nm in diameter) showed significant variance in association with monocytes and B cells across all plasma donors studied. An in-depth proteomic analysis of each biomolecular corona studied was performed, and the results were compared against the nanoparticle-blood cell association results, with individual variance in the proteome driving differential association with specific immune cell types. We identified key immunoglobulin and complement proteins that explicitly enriched or depleted within the corona and which strongly correlated with the cell association pattern observed across the 23 donors. This study demonstrates how plasma variance in healthy individuals significantly influences the blood immune cell interactions of nanoparticles

    RIPK1 regulates RIPK3-MLKL-driven systemic inflammation and emergency hematopoiesis

    Get PDF
    SummaryUpon ligand binding, RIPK1 is recruited to tumor necrosis factor receptor superfamily (TNFRSF) and Toll-like receptor (TLR) complexes promoting prosurvival and inflammatory signaling. RIPK1 also directly regulates caspase-8-mediated apoptosis or, if caspase-8 activity is blocked, RIPK3-MLKL-dependent necroptosis. We show that C57BL/6 Ripk1āˆ’/āˆ’ mice die at birth of systemic inflammation that was not transferable by the hematopoietic compartment. However, Ripk1āˆ’/āˆ’ progenitors failed to engraft lethally irradiated hosts properly. Blocking TNF reversed this defect in emergency hematopoiesis but, surprisingly, Tnfr1 deficiency did not prevent inflammation in Ripk1āˆ’/āˆ’ neonates. Deletion of Ripk3 or Mlkl, but not Casp8, prevented extracellular release of the necroptotic DAMP, IL-33, and reduced Myd88-dependent inflammation. Reduced inflammation in the Ripk1āˆ’/āˆ’Ripk3āˆ’/āˆ’, Ripk1āˆ’/āˆ’Mlklāˆ’/āˆ’, and Ripk1āˆ’/āˆ’Myd88āˆ’/āˆ’ mice prevented neonatal lethality, but only Ripk1āˆ’/āˆ’Ripk3āˆ’/āˆ’Casp8āˆ’/āˆ’ mice survived past weaning. These results reveal a key function for RIPK1 in inhibiting necroptosis and, thereby, a role in limiting, not only promoting, inflammation

    Combination of IAP antagonist and IFNĪ³ activates novel caspase-10- and RIPK1-dependent cell death pathways

    Full text link
    Peptido-mimetic inhibitor of apoptosis protein (IAP) antagonists (Smac mimetics (SMs)) can kill tumour cells by depleting endogenous IAPs and thereby inducing tumour necrosis factor (TNF) production. We found that interferon-Ī³ (IFNĪ³) synergises with SMs to kill cancer cells independently of TNF āˆ’ and other cell death receptor signalling pathways. Surprisingly, CRISPR/Cas9 HT29 cells doubly deficient for caspase-8 and the necroptotic pathway mediators RIPK3 or MLKL were still sensitive to IFNĪ³/SM- induced killing. Triple CRISPR/Cas9-knockout HT29 cells lacking caspase-10 in addition to caspase-8 and RIPK3 or MLKL were resistant to IFNĪ³/SM killing. Caspase-8 and RIPK1 deficiency was, however, sufficient to protect cells from IFNĪ³/SM-induced cell death, implying a role for RIPK1 in the activation of caspase-10. These data show that RIPK1 and caspase-10 mediate cell death in HT29 cells when caspase-8-mediated apoptosis and necroptosis are blocked and help to clarify how SMs operate as chemotherapeutic agents

    A missense mutation in the MLKL brace region promotes lethal neonatal inflammation and hematopoietic dysfunction

    Get PDF
    Necroptosis is a regulated form of inflammatory cell death driven by activated MLKL. Here, the authors identify a mutation in the brace region that confers constitutive activation, leading to lethal inflammation in homozygous mutant mice and providing insight into human mutations in this region
    corecore