11,217 research outputs found

    Exact Results for Spectra of Overdamped Brownian Motion in Fixed and Randomly Switching Potentials

    Full text link
    The exact formulae for spectra of equilibrium diffusion in a fixed bistable piecewise linear potential and in a randomly flipping monostable potential are derived. Our results are valid for arbitrary intensity of driving white Gaussian noise and arbitrary parameters of potential profiles. We find: (i) an exponentially rapid narrowing of the spectrum with increasing height of the potential barrier, for fixed bistable potential; (ii) a nonlinear phenomenon, which manifests in the narrowing of the spectrum with increasing mean rate of flippings, and (iii) a nonmonotonic behaviour of the spectrum at zero frequency, as a function of the mean rate of switchings, for randomly switching potential. The last feature is a new characterization of resonant activation phenomenon.Comment: in press in Acta Physica Polonica, vol. 35 (4), 200

    Noise Enhanced Stability

    Full text link
    The noise can stabilize a fluctuating or a periodically driven metastable state in such a way that the system remains in this state for a longer time than in the absence of white noise. This is the noise enhanced stability phenomenon, observed experimentally and numerically in different physical systems. After shortly reviewing all the physical systems where the phenomenon was observed, the theoretical approaches used to explain the effect are presented. Specifically the conditions to observe the effect: (a) in systems with periodical driving force, and (b) in random dichotomous driving force, are discussed. In case (b) we review the analytical results concerning the mean first passage time and the nonlinear relaxation time as a function of the white noise intensity, the parameters of the potential barrier, and of the dichotomous noise.Comment: 18 pages, 6 figures, in press Acta Physica Polonica (2004

    Fluctuating noise drives Brownian transport

    Full text link
    The transport properties of Brownian ratchet was studied in the presence of stochastic intensity noise (SIN) in both overdamped and underdamped regimes. In the overdamped case, analytical solution using the matrix continued fraction method revealed the existence of a maximum current when the noise intensity fluctuates on intermediate time scale regions. Similar effects were observed for the underdamped case by Monte Carlo simulations. The optimal time-correlation for the Brownian transport coincided with the experimentally observed time-correlation of the extrinsic noise in Esherichia coli gene expression and implied the importance of environmental noise for molecular mechanisms.Comment: 22 pages, 8 figure

    The problem of analytical calculation of barrier crossing characteristics for Levy flights

    Full text link
    By using the backward fractional Fokker-Planck equation we investigate the barrier crossing event in the presence of Levy noise. After shortly review recent results obtained with different approaches on the time characteristics of the barrier crossing, we derive a general differential equation useful to calculate the nonlinear relaxation time. We obtain analytically the nonlinear relaxation time for free Levy flights and a closed expression in quadrature of the same characteristics for cubic potential.Comment: 12 pages, 2 figures, presented at 5th International Conference on Unsolved Problems on Noise, Lyon, France, 2008, to appear in J. Stat. Mech.: Theory and Experimen

    Thermal modeling of terahertz quantum-cascade lasers: comparison of optical waveguides

    Get PDF
    We compare a set of experimental lattice temperature profiles measured in a surface-emitting terahertz (THz) quantum-cascade laser (QCL) with the results of a 2-D anisotropic heat diffusion model. We evaluate the temperature dependence of the cross-plane thermal conductivity (kappaperp) of the active region which is known to be strongly anisotropic due to its superlattice-like nature. Knowledge of kappaperp and its temperature dependence is crucial in order to improve the temperature performance of THz QCLs and this has been used to investigate the longitudinal lattice temperature distribution of the active region and to compare the thermal properties of metal-metal and semi-insulating surface-plasmon THz optical waveguides using a 3-D anisotropic heat diffusion model

    Effect of boundaries on vacuum field fluctuations and radiation-mediated interactions between atoms

    Get PDF
    In this paper we discuss and review several aspects of the effect of boundary conditions and structured environments on dispersion and resonance interactions involving atoms or molecules, as well as on vacuum field fluctuations. We first consider the case of a perfect mirror, which is free to move around an equilibrium position and whose mechanical degrees of freedom are treated quantum mechanically. We investigate how the quantum fluctuations of the mirror's position affect vacuum field fluctuations for both a one-dimensional scalar and electromagnetic field, showing that the effect is particularly significant in the proximity of the moving mirror. This result can be also relevant for possible gravitational effects, since the field energy density couples to gravity. We stress that this interaction-induced modification of the vacuum field fluctuations can be probed through the Casimir-Polder interaction with a polarizable body, thus allowing to detect the effect of the mirror's quantum position fluctuations. We then consider the effect of an environment such as an isotropic photonic crystal or a metallic waveguide, on the resonance interaction between two entangled identical atoms, one excited and the other in the ground state. We discuss the strong dependence of the resonance interaction with the relative position of the atomic transition frequency with the gap of the photonic crystal in the former case, and with the cut-off frequency of waveguide in the latter.Comment: 8 pages, 2 figures, Proceedings of the Eighth International Workshop DICE 2016 Spacetime - Matter - Quantum Mechanic

    Harmony perception and regularity of spike trains in a simple auditory model

    Get PDF
    A probabilistic approach for investigating the phenomena of dissonance and consonance in a simple auditory sensory model, composed by two sensory neurons and one interneuron, is presented. We calculated the interneuron’s firing statistics, that is the interspike interval statistics of the spike train at the output of the interneuron, for consonant and dissonant inputs in the presence of additional "noise", representing random signals from other, nearby neurons and from the environment. We find that blurry interspike interval distributions (ISIDs) characterize dissonant accords, while quite regular ISIDs characterize consonant accords. The informational entropy of the non-Markov spike train at the output of the interneuron and its dependence on the frequency ratio of input sinusoidal signals is estimated. We introduce the regularity of spike train and suggested the high or low regularity level of the auditory system’s spike trains as an indicator of feeling of harmony during sound perception or disharmony, respectively
    corecore